Sharp well-posedness for the Benjamin–Ono equation

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Rowan Killip, Thierry Laurens, Monica Vişan
{"title":"Sharp well-posedness for the Benjamin–Ono equation","authors":"Rowan Killip, Thierry Laurens, Monica Vişan","doi":"10.1007/s00222-024-01250-8","DOIUrl":null,"url":null,"abstract":"<p>The Benjamin–Ono equation is shown to be well-posed, both on the line and on the circle, in the Sobolev spaces <span>\\(H^{s}\\)</span> for <span>\\(s&gt;-\\tfrac{1}{2}\\)</span>. The proof rests on a new gauge transformation and benefits from our introduction of a modified Lax pair representation of the full hierarchy. As we will show, these developments yield important additional dividends beyond well-posedness, including (i) the unification of the diverse approaches to polynomial conservation laws; (ii) a generalization of Gérard’s explicit formula to the full hierarchy; and (iii) new virial-type identities covering all equations in the hierarchy.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00222-024-01250-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The Benjamin–Ono equation is shown to be well-posed, both on the line and on the circle, in the Sobolev spaces \(H^{s}\) for \(s>-\tfrac{1}{2}\). The proof rests on a new gauge transformation and benefits from our introduction of a modified Lax pair representation of the full hierarchy. As we will show, these developments yield important additional dividends beyond well-posedness, including (i) the unification of the diverse approaches to polynomial conservation laws; (ii) a generalization of Gérard’s explicit formula to the full hierarchy; and (iii) new virial-type identities covering all equations in the hierarchy.

本杰明-奥诺方程的夏普好拟性
本杰明-奥诺方程被证明在 Sobolev 空间 \(H^{s}\)的 \(s>-\tfrac{1}{2}\)中,无论是在直线上还是在圆上,都可以很好地求解。证明建立在一种新的规规变换之上,并得益于我们对全层次结构的修正拉克斯对表示的引入。正如我们将展示的那样,这些发展产生了良好拟合之外的重要额外红利,包括:(i) 统一了多项式守恒定律的各种方法;(ii) 将热拉尔的显式公式推广到完整层次结构;(iii) 涵盖层次结构中所有方程的新的病毒式等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信