Sweeping Arrangements of Non-Piercing Curves in Plane

Suryendu Dalal, Rahul Gangopadhyay, Rajiv Raman, Saurabh Ray
{"title":"Sweeping Arrangements of Non-Piercing Curves in Plane","authors":"Suryendu Dalal, Rahul Gangopadhyay, Rajiv Raman, Saurabh Ray","doi":"arxiv-2403.16474","DOIUrl":null,"url":null,"abstract":"Let $\\Gamma$ be a finite set of Jordan curves in the plane. For any curve\n$\\gamma \\in \\Gamma$, we denote the bounded region enclosed by $\\gamma$ as\n$\\tilde{\\gamma}$. We say that $\\Gamma$ is a non-piercing family if for any two\ncurves $\\alpha , \\beta \\in \\Gamma$, $\\tilde{\\alpha} \\setminus \\tilde{\\beta}$ is\na connected region. A non-piercing family of curves generalizes a family of\n$2$-intersecting curves in which each pair of curves intersect in at most two\npoints. Snoeyink and Hershberger (``Sweeping Arrangements of Curves'', SoCG\n'89) proved that if we are given a family $\\mathcal{C}$ of $2$-intersecting\ncurves and a fixed curve $C\\in\\mathcal{C}$, then the arrangement can be\n\\emph{swept} by $C$, i.e., $C$ can be continuously shrunk to any point $p \\in\n\\tilde{C}$ in such a way that the we have a family of $2$-intersecting curves\nthroughout the process. In this paper, we generalize the result of Snoeyink and\nHershberger to the setting of non-piercing curves. We show that given an\narrangement of non-piercing curves $\\Gamma$, and a fixed curve $\\gamma\\in\n\\Gamma$, the arrangement can be swept by $\\gamma$ so that the arrangement\nremains non-piercing throughout the process. We also give a shorter and simpler\nproof of the result of Snoeyink and Hershberger and cite applications of their\nresult, where our result leads to a generalization.","PeriodicalId":501570,"journal":{"name":"arXiv - CS - Computational Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.16474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $\Gamma$ be a finite set of Jordan curves in the plane. For any curve $\gamma \in \Gamma$, we denote the bounded region enclosed by $\gamma$ as $\tilde{\gamma}$. We say that $\Gamma$ is a non-piercing family if for any two curves $\alpha , \beta \in \Gamma$, $\tilde{\alpha} \setminus \tilde{\beta}$ is a connected region. A non-piercing family of curves generalizes a family of $2$-intersecting curves in which each pair of curves intersect in at most two points. Snoeyink and Hershberger (``Sweeping Arrangements of Curves'', SoCG '89) proved that if we are given a family $\mathcal{C}$ of $2$-intersecting curves and a fixed curve $C\in\mathcal{C}$, then the arrangement can be \emph{swept} by $C$, i.e., $C$ can be continuously shrunk to any point $p \in \tilde{C}$ in such a way that the we have a family of $2$-intersecting curves throughout the process. In this paper, we generalize the result of Snoeyink and Hershberger to the setting of non-piercing curves. We show that given an arrangement of non-piercing curves $\Gamma$, and a fixed curve $\gamma\in \Gamma$, the arrangement can be swept by $\gamma$ so that the arrangement remains non-piercing throughout the process. We also give a shorter and simpler proof of the result of Snoeyink and Hershberger and cite applications of their result, where our result leads to a generalization.
平面内非穿透曲线的扫掠排列
让 $\Gamma$ 是平面中约旦曲线的有限集合。对于 $\Gamma$ 中的任意曲线$\gamma, 我们把$\gamma$所包围的有界区域称为$\tilde/{gamma}$.如果对于任意两条曲线 $alpha , \beta 在 $Gamma$ 中,$\tilde{alpha}\setminus\tilde{beta}$ 是一个连通区域,我们就说 $Gamma$ 是一个非穿孔族。非相交曲线族概括了每对曲线最多相交两个点的 2 元相交曲线族。Snoeyink 和 Hershberger (''扫掠曲线排列'', SoCG'89) 证明了如果我们给定一个$2$相交曲线的$mathcal{C}$族和一条固定的曲线$C/in/mathcal{C}$,那么这个排列可以被$C$扫掠,也就是说、$C$ 可以连续收缩到任意点 $p \in\tilde{C}$ 这样,我们在整个过程中就有了一个相交于$2$的曲线族。在本文中,我们将 Snoeyink 和 Hershberger 的结果推广到非穿孔曲线的环境中。我们证明,给定非穿孔曲线 $\Gamma$ 的排列和一条固定曲线 $\gamma\in\Gamma$ ,该排列可以被 $\gamma$ 扫过,从而使排列在整个过程中保持非穿孔。我们还给出了 Snoeyink 和 Hershberger 的结果的更简短的证明,并列举了他们的结果的应用,我们的结果导致了这些应用的推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信