THE SUMMED PAPERFOLDING SEQUENCE

Pub Date : 2024-03-25 DOI:10.1017/s0004972724000169
MARTIN BUNDER, BRUCE BATES, STEPHEN ARNOLD
{"title":"THE SUMMED PAPERFOLDING SEQUENCE","authors":"MARTIN BUNDER, BRUCE BATES, STEPHEN ARNOLD","doi":"10.1017/s0004972724000169","DOIUrl":null,"url":null,"abstract":"The sequence <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000169_inline1.png\" /> <jats:tex-math> $a( 1) ,a( 2) ,a( 3) ,\\ldots, $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> labelled A088431 in the <jats:italic>Online Encyclopedia of Integer Sequences</jats:italic>, is defined by: <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000169_inline2.png\" /> <jats:tex-math> $a( n) $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is half of the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000169_inline3.png\" /> <jats:tex-math> $( n+1) $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>th component, that is, the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000169_inline4.png\" /> <jats:tex-math> $( n+2) $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>th term, of the continued fraction expansion of <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000169_eqnu1.png\" /> <jats:tex-math> $$ \\begin{align*} \\sum_{k=0}^{\\infty }\\frac{1}{2^{2^{k}}}. \\end{align*} $$ </jats:tex-math> </jats:alternatives> </jats:disp-formula> Dimitri Hendriks has suggested that it is the sequence of run lengths of the paperfolding sequence, A014577. This paper proves several results for this summed paperfolding sequence and confirms Hendriks’s conjecture.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0004972724000169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The sequence $a( 1) ,a( 2) ,a( 3) ,\ldots, $ labelled A088431 in the Online Encyclopedia of Integer Sequences, is defined by: $a( n) $ is half of the $( n+1) $ th component, that is, the $( n+2) $ th term, of the continued fraction expansion of $$ \begin{align*} \sum_{k=0}^{\infty }\frac{1}{2^{2^{k}}}. \end{align*} $$ Dimitri Hendriks has suggested that it is the sequence of run lengths of the paperfolding sequence, A014577. This paper proves several results for this summed paperfolding sequence and confirms Hendriks’s conjecture.
分享
查看原文
汇总折纸序列
序列 $a( 1) ,a( 2) ,a( 3) ,\ldots, $ 在《整数序列在线百科全书》中标为 A088431, 其定义如下: $a( n) $ 是 $$ \begin{align*} 的续分数展开式中 $( n+1) $ 第三项分量的一半,即 $( n+2) $ 第三项。\sum_{k=0}^{\infty }\frac{1}{2^{2^{k}}}.\end{align*}$$ Dimitri Hendriks 认为它是折纸序列 A014577 的运行长度序列。本文证明了这个求和折纸序列的几个结果,并证实了亨德里克斯的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信