Heptagonal Reinforcement Learning (HRL): a novel algorithm for early prevention of non-sinus cardiac arrhythmia

3区 计算机科学 Q1 Computer Science
Arman Daliri, Roghaye Sadeghi, Neda Sedighian, Abbas Karimi, Javad Mohammadzadeh
{"title":"Heptagonal Reinforcement Learning (HRL): a novel algorithm for early prevention of non-sinus cardiac arrhythmia","authors":"Arman Daliri, Roghaye Sadeghi, Neda Sedighian, Abbas Karimi, Javad Mohammadzadeh","doi":"10.1007/s12652-024-04776-0","DOIUrl":null,"url":null,"abstract":"<p>There have been many connections between medical science and artificial intelligence in recent years. Many problems arise with the integrity of communication. Cardiac arrhythmia, carried out using artificial intelligence methods, is one of the most dangerous diseases in the field of prevention. Topics introduced in artificial intelligence are the automatic selection of balancing and classification algorithms. In this study, metrics for machine learning algorithm selection are presented. The first problem is the problem of choosing the best balancing algorithm to balance the data sets, introduced as triangle rate (TR). The second issue to be studied is selecting the best automatic classification algorithm. The third action was to use a scoring algorithm to predict sinus and non-sinus arrhythmias. The heptagonal reinforcement learning (HRL) achieved results competitive with standard algorithms by combining three types of algorithms. The data used in this study was a 12-lead electrocardiogram (ECG) database of arrhythmias. The number of patients examined in this dataset is 10,646. The HRL algorithm has improved the previous algorithms by 5%, achieving 86% cardiac arrhythmia prediction.</p>","PeriodicalId":14959,"journal":{"name":"Journal of Ambient Intelligence and Humanized Computing","volume":"181 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ambient Intelligence and Humanized Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12652-024-04776-0","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

There have been many connections between medical science and artificial intelligence in recent years. Many problems arise with the integrity of communication. Cardiac arrhythmia, carried out using artificial intelligence methods, is one of the most dangerous diseases in the field of prevention. Topics introduced in artificial intelligence are the automatic selection of balancing and classification algorithms. In this study, metrics for machine learning algorithm selection are presented. The first problem is the problem of choosing the best balancing algorithm to balance the data sets, introduced as triangle rate (TR). The second issue to be studied is selecting the best automatic classification algorithm. The third action was to use a scoring algorithm to predict sinus and non-sinus arrhythmias. The heptagonal reinforcement learning (HRL) achieved results competitive with standard algorithms by combining three types of algorithms. The data used in this study was a 12-lead electrocardiogram (ECG) database of arrhythmias. The number of patients examined in this dataset is 10,646. The HRL algorithm has improved the previous algorithms by 5%, achieving 86% cardiac arrhythmia prediction.

Abstract Image

七边强化学习(HRL):早期预防非窦性心律失常的新型算法
近年来,医学科学与人工智能之间产生了许多联系。在交流的完整性方面出现了许多问题。使用人工智能方法进行的心律失常是预防领域中最危险的疾病之一。人工智能引入的主题是自动选择平衡和分类算法。本研究提出了机器学习算法选择的衡量标准。第一个问题是选择最佳平衡算法来平衡数据集的问题,引入三角形率(TR)。第二个要研究的问题是选择最佳自动分类算法。第三个行动是使用评分算法预测窦性和非窦性心律失常。七边强化学习(HRL)通过结合三种算法,取得了与标准算法相媲美的结果。这项研究使用的数据是一个 12 导联心电图(ECG)心律失常数据库。该数据集中的患者人数为 10,646 人。HRL 算法比之前的算法提高了 5%,心律失常预测率达到 86%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Ambient Intelligence and Humanized Computing
Journal of Ambient Intelligence and Humanized Computing COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCEC-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
9.60
自引率
0.00%
发文量
854
期刊介绍: The purpose of JAIHC is to provide a high profile, leading edge forum for academics, industrial professionals, educators and policy makers involved in the field to contribute, to disseminate the most innovative researches and developments of all aspects of ambient intelligence and humanized computing, such as intelligent/smart objects, environments/spaces, and systems. The journal discusses various technical, safety, personal, social, physical, political, artistic and economic issues. The research topics covered by the journal are (but not limited to): Pervasive/Ubiquitous Computing and Applications Cognitive wireless sensor network Embedded Systems and Software Mobile Computing and Wireless Communications Next Generation Multimedia Systems Security, Privacy and Trust Service and Semantic Computing Advanced Networking Architectures Dependable, Reliable and Autonomic Computing Embedded Smart Agents Context awareness, social sensing and inference Multi modal interaction design Ergonomics and product prototyping Intelligent and self-organizing transportation networks & services Healthcare Systems Virtual Humans & Virtual Worlds Wearables sensors and actuators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信