{"title":"Fast Rates for the Regret of Offline Reinforcement Learning","authors":"Yichun Hu, Nathan Kallus, Masatoshi Uehara","doi":"10.1287/moor.2021.0167","DOIUrl":null,"url":null,"abstract":"We study the regret of offline reinforcement learning in an infinite-horizon discounted Markov decision process (MDP). While existing analyses of common approaches, such as fitted Q-iteration (FQI), suggest root-n convergence for regret, empirical behavior exhibits much faster convergence. In this paper, we present a finer regret analysis that exactly characterizes this phenomenon by providing fast rates for the regret convergence. First, we show that given any estimate for the optimal quality function, the regret of the policy it defines converges at a rate given by the exponentiation of the estimate’s pointwise convergence rate, thus speeding up the rate. The level of exponentiation depends on the level of noise in the decision-making problem, rather than the estimation problem. We establish such noise levels for linear and tabular MDPs as examples. Second, we provide new analyses of FQI and Bellman residual minimization to establish the correct pointwise convergence guarantees. As specific cases, our results imply one-over-n rates in linear cases and exponential-in-n rates in tabular cases. We extend our findings to general function approximation by extending our results to regret guarantees based on L<jats:sub>p</jats:sub>-convergence rates for estimating the optimal quality function rather than pointwise rates, where L<jats:sub>2</jats:sub> guarantees for nonparametric estimation can be ensured under mild conditions.Funding: This work was supported by the Division of Information and Intelligent Systems, National Science Foundation [Grant 1846210].","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1287/moor.2021.0167","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We study the regret of offline reinforcement learning in an infinite-horizon discounted Markov decision process (MDP). While existing analyses of common approaches, such as fitted Q-iteration (FQI), suggest root-n convergence for regret, empirical behavior exhibits much faster convergence. In this paper, we present a finer regret analysis that exactly characterizes this phenomenon by providing fast rates for the regret convergence. First, we show that given any estimate for the optimal quality function, the regret of the policy it defines converges at a rate given by the exponentiation of the estimate’s pointwise convergence rate, thus speeding up the rate. The level of exponentiation depends on the level of noise in the decision-making problem, rather than the estimation problem. We establish such noise levels for linear and tabular MDPs as examples. Second, we provide new analyses of FQI and Bellman residual minimization to establish the correct pointwise convergence guarantees. As specific cases, our results imply one-over-n rates in linear cases and exponential-in-n rates in tabular cases. We extend our findings to general function approximation by extending our results to regret guarantees based on Lp-convergence rates for estimating the optimal quality function rather than pointwise rates, where L2 guarantees for nonparametric estimation can be ensured under mild conditions.Funding: This work was supported by the Division of Information and Intelligent Systems, National Science Foundation [Grant 1846210].
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.