{"title":"Cycle Isolation of Graphs with Small Girth","authors":"Gang Zhang, Baoyindureng Wu","doi":"10.1007/s00373-024-02768-7","DOIUrl":null,"url":null,"abstract":"<p>Let <i>G</i> be a graph. A subset <span>\\(D \\subseteq V(G)\\)</span> is a decycling set of <i>G</i> if <span>\\(G-D\\)</span> contains no cycle. A subset <span>\\(D \\subseteq V(G)\\)</span> is a cycle isolating set of <i>G</i> if <span>\\(G-N[D]\\)</span> contains no cycle. The decycling number and cycle isolation number of <i>G</i>, denoted by <span>\\(\\phi (G)\\)</span> and <span>\\(\\iota _c(G)\\)</span>, are the minimum cardinalities of a decycling set and a cycle isolating set of <i>G</i>, respectively. Dross, Montassier and Pinlou (Discrete Appl Math 214:99–107, 2016) conjectured that if <i>G</i> is a planar graph of size <i>m</i> and girth at least <i>g</i>, then <span>\\(\\phi (G) \\le \\frac{m}{g}\\)</span>. So far, this conjecture remains open. Recently, the authors proposed an analogous conjecture that if <i>G</i> is a connected graph of size <i>m</i> and girth at least <i>g</i> that is different from <span>\\(C_g\\)</span>, then <span>\\(\\iota _c(G) \\le \\frac{m+1}{g+2}\\)</span>, and they presented a proof for the initial case <span>\\(g=3\\)</span>. In this paper, we further prove that for the cases of girth at least 4, 5 and 6, this conjecture is true. The extremal graphs of results above are characterized.</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":"22 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphs and Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-024-02768-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let G be a graph. A subset \(D \subseteq V(G)\) is a decycling set of G if \(G-D\) contains no cycle. A subset \(D \subseteq V(G)\) is a cycle isolating set of G if \(G-N[D]\) contains no cycle. The decycling number and cycle isolation number of G, denoted by \(\phi (G)\) and \(\iota _c(G)\), are the minimum cardinalities of a decycling set and a cycle isolating set of G, respectively. Dross, Montassier and Pinlou (Discrete Appl Math 214:99–107, 2016) conjectured that if G is a planar graph of size m and girth at least g, then \(\phi (G) \le \frac{m}{g}\). So far, this conjecture remains open. Recently, the authors proposed an analogous conjecture that if G is a connected graph of size m and girth at least g that is different from \(C_g\), then \(\iota _c(G) \le \frac{m+1}{g+2}\), and they presented a proof for the initial case \(g=3\). In this paper, we further prove that for the cases of girth at least 4, 5 and 6, this conjecture is true. The extremal graphs of results above are characterized.
期刊介绍:
Graphs and Combinatorics is an international journal devoted to research concerning all aspects of combinatorial mathematics. In addition to original research papers, the journal also features survey articles from authors invited by the editorial board.