{"title":"Cycle Isolation of Graphs with Small Girth","authors":"Gang Zhang, Baoyindureng Wu","doi":"10.1007/s00373-024-02768-7","DOIUrl":null,"url":null,"abstract":"<p>Let <i>G</i> be a graph. A subset <span>\\(D \\subseteq V(G)\\)</span> is a decycling set of <i>G</i> if <span>\\(G-D\\)</span> contains no cycle. A subset <span>\\(D \\subseteq V(G)\\)</span> is a cycle isolating set of <i>G</i> if <span>\\(G-N[D]\\)</span> contains no cycle. The decycling number and cycle isolation number of <i>G</i>, denoted by <span>\\(\\phi (G)\\)</span> and <span>\\(\\iota _c(G)\\)</span>, are the minimum cardinalities of a decycling set and a cycle isolating set of <i>G</i>, respectively. Dross, Montassier and Pinlou (Discrete Appl Math 214:99–107, 2016) conjectured that if <i>G</i> is a planar graph of size <i>m</i> and girth at least <i>g</i>, then <span>\\(\\phi (G) \\le \\frac{m}{g}\\)</span>. So far, this conjecture remains open. Recently, the authors proposed an analogous conjecture that if <i>G</i> is a connected graph of size <i>m</i> and girth at least <i>g</i> that is different from <span>\\(C_g\\)</span>, then <span>\\(\\iota _c(G) \\le \\frac{m+1}{g+2}\\)</span>, and they presented a proof for the initial case <span>\\(g=3\\)</span>. In this paper, we further prove that for the cases of girth at least 4, 5 and 6, this conjecture is true. The extremal graphs of results above are characterized.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-024-02768-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let G be a graph. A subset \(D \subseteq V(G)\) is a decycling set of G if \(G-D\) contains no cycle. A subset \(D \subseteq V(G)\) is a cycle isolating set of G if \(G-N[D]\) contains no cycle. The decycling number and cycle isolation number of G, denoted by \(\phi (G)\) and \(\iota _c(G)\), are the minimum cardinalities of a decycling set and a cycle isolating set of G, respectively. Dross, Montassier and Pinlou (Discrete Appl Math 214:99–107, 2016) conjectured that if G is a planar graph of size m and girth at least g, then \(\phi (G) \le \frac{m}{g}\). So far, this conjecture remains open. Recently, the authors proposed an analogous conjecture that if G is a connected graph of size m and girth at least g that is different from \(C_g\), then \(\iota _c(G) \le \frac{m+1}{g+2}\), and they presented a proof for the initial case \(g=3\). In this paper, we further prove that for the cases of girth at least 4, 5 and 6, this conjecture is true. The extremal graphs of results above are characterized.