{"title":"Quadratic Fock Space Calculus (II): Positivity of the Preservation Operator and Linear Independence of the Quadratic Exponential Vectors","authors":"Omar Alzeley, Habib Rebei, Hafedh Rguigui","doi":"10.1007/s11785-024-01503-7","DOIUrl":null,"url":null,"abstract":"<p>It have been proved in Accardi and Dhahri (J Math Phys 51:2, 2010) that the set of the exponential vectors <span>\\(\\Phi (g), \\; g\\in {\\mathcal {K}}:=L^2({\\mathbb {R}}^d)\\cap L^{\\infty }({\\mathbb {R}}^d)\\)</span> associated with different test functions <span>\\(g_i\\in {\\mathcal {K}}\\)</span>, are linearly independents. Even this result is true, we present an alternative proof that is consistent with the results of this paper. In this paper, we start by a review of some results on the quadratic Fock space obtained in Accardi and Dhahri (J Math Phys 51:2, 2010) and Rebei (J Math Anal Appl 439(1): 135–153, 2016) , then we prove that the number operator is positive for non negative test function from which we deduce that the creation operator is injective. As application of the injectivity, we give an algebraic proof of the linear independence of the quadratic exponential vectors <span>\\(\\Phi (g)\\)</span>.</p>","PeriodicalId":50654,"journal":{"name":"Complex Analysis and Operator Theory","volume":"18 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Analysis and Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11785-024-01503-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
It have been proved in Accardi and Dhahri (J Math Phys 51:2, 2010) that the set of the exponential vectors \(\Phi (g), \; g\in {\mathcal {K}}:=L^2({\mathbb {R}}^d)\cap L^{\infty }({\mathbb {R}}^d)\) associated with different test functions \(g_i\in {\mathcal {K}}\), are linearly independents. Even this result is true, we present an alternative proof that is consistent with the results of this paper. In this paper, we start by a review of some results on the quadratic Fock space obtained in Accardi and Dhahri (J Math Phys 51:2, 2010) and Rebei (J Math Anal Appl 439(1): 135–153, 2016) , then we prove that the number operator is positive for non negative test function from which we deduce that the creation operator is injective. As application of the injectivity, we give an algebraic proof of the linear independence of the quadratic exponential vectors \(\Phi (g)\).
期刊介绍:
Complex Analysis and Operator Theory (CAOT) is devoted to the publication of current research developments in the closely related fields of complex analysis and operator theory as well as in applications to system theory, harmonic analysis, probability, statistics, learning theory, mathematical physics and other related fields. Articles using the theory of reproducing kernel spaces are in particular welcomed.