Legged Robot State Estimation within Non-inertial Environments

Zijian He, Sangli Teng, Tzu-Yuan Lin, Maani Ghaffari, Yan Gu
{"title":"Legged Robot State Estimation within Non-inertial Environments","authors":"Zijian He, Sangli Teng, Tzu-Yuan Lin, Maani Ghaffari, Yan Gu","doi":"arxiv-2403.16252","DOIUrl":null,"url":null,"abstract":"This paper investigates the robot state estimation problem within a\nnon-inertial environment. The proposed state estimation approach relaxes the\ncommon assumption of static ground in the system modeling. The process and\nmeasurement models explicitly treat the movement of the non-inertial\nenvironments without requiring knowledge of its motion in the inertial frame or\nrelying on GPS or sensing environmental landmarks. Further, the proposed state\nestimator is formulated as an invariant extended Kalman filter (InEKF) with the\ndeterministic part of its process model obeying the group-affine property,\nleading to log-linear error dynamics. The observability analysis of the filter\nconfirms that the robot's pose (i.e., position and orientation) and velocity\nrelative to the non-inertial environment are observable. Hardware experiments\non a humanoid robot moving on a rotating and translating treadmill demonstrate\nthe high convergence rate and accuracy of the proposed InEKF even under\nsignificant treadmill pitch sway, as well as large estimation errors.","PeriodicalId":501062,"journal":{"name":"arXiv - CS - Systems and Control","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.16252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the robot state estimation problem within a non-inertial environment. The proposed state estimation approach relaxes the common assumption of static ground in the system modeling. The process and measurement models explicitly treat the movement of the non-inertial environments without requiring knowledge of its motion in the inertial frame or relying on GPS or sensing environmental landmarks. Further, the proposed state estimator is formulated as an invariant extended Kalman filter (InEKF) with the deterministic part of its process model obeying the group-affine property, leading to log-linear error dynamics. The observability analysis of the filter confirms that the robot's pose (i.e., position and orientation) and velocity relative to the non-inertial environment are observable. Hardware experiments on a humanoid robot moving on a rotating and translating treadmill demonstrate the high convergence rate and accuracy of the proposed InEKF even under significant treadmill pitch sway, as well as large estimation errors.
非惯性环境下的腿式机器人状态估计
本文研究了非惯性环境下的机器人状态估计问题。所提出的状态估计方法放宽了系统建模中常见的静态地面假设。过程模型和测量模型明确地处理了非惯性环境的运动,而无需了解其在惯性框架中的运动,也无需依赖 GPS 或感应环境地标。此外,所提出的状态估计器被表述为一个不变的扩展卡尔曼滤波器(InEKF),其过程模型的确定性部分服从群正弦属性,从而导致对数线性误差动态。滤波器的可观测性分析表明,机器人相对于非惯性环境的姿态(即位置和方向)和速度是可观测的。在旋转和平移跑步机上移动的仿人机器人上进行的硬件实验证明,即使在跑步机俯仰摇摆明显以及估计误差较大的情况下,所提出的 InEKF 仍具有很高的收敛率和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信