HT-LIP Model based Robust Control of Quadrupedal Robot Locomotion under Unknown Vertical Ground Motion

Amir Iqbal, Sushant Veer, Christopher Niezrecki, Yan Gu
{"title":"HT-LIP Model based Robust Control of Quadrupedal Robot Locomotion under Unknown Vertical Ground Motion","authors":"Amir Iqbal, Sushant Veer, Christopher Niezrecki, Yan Gu","doi":"arxiv-2403.16262","DOIUrl":null,"url":null,"abstract":"This paper presents a hierarchical control framework that enables robust\nquadrupedal locomotion on a dynamic rigid surface (DRS) with general and\nunknown vertical motions. The key novelty of the framework lies in its higher\nlayer, which is a discrete-time, provably stabilizing footstep controller. The\nbasis of the footstep controller is a new hybrid, time-varying, linear inverted\npendulum (HT-LIP) model that is low-dimensional and accurately captures the\nessential robot dynamics during DRS locomotion. A new set of sufficient\nstability conditions are then derived to directly guide the controller design\nfor ensuring the asymptotic stability of the HT-LIP model under general,\nunknown, vertical DRS motions. Further, the footstep controller is cast as a\ncomputationally efficient quadratic program that incorporates the proposed\nHT-LIP model and stability conditions. The middle layer takes the desired\nfootstep locations generated by the higher layer as input to produce\nkinematically feasible full-body reference trajectories, which are then\naccurately tracked by a lower-layer torque controller. Hardware experiments on\na Unitree Go1 quadrupedal robot confirm the robustness of the proposed\nframework under various unknown, aperiodic, vertical DRS motions and\nuncertainties (e.g., slippery and uneven surfaces, solid and liquid loads, and\nsudden pushes).","PeriodicalId":501062,"journal":{"name":"arXiv - CS - Systems and Control","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.16262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a hierarchical control framework that enables robust quadrupedal locomotion on a dynamic rigid surface (DRS) with general and unknown vertical motions. The key novelty of the framework lies in its higher layer, which is a discrete-time, provably stabilizing footstep controller. The basis of the footstep controller is a new hybrid, time-varying, linear inverted pendulum (HT-LIP) model that is low-dimensional and accurately captures the essential robot dynamics during DRS locomotion. A new set of sufficient stability conditions are then derived to directly guide the controller design for ensuring the asymptotic stability of the HT-LIP model under general, unknown, vertical DRS motions. Further, the footstep controller is cast as a computationally efficient quadratic program that incorporates the proposed HT-LIP model and stability conditions. The middle layer takes the desired footstep locations generated by the higher layer as input to produce kinematically feasible full-body reference trajectories, which are then accurately tracked by a lower-layer torque controller. Hardware experiments on a Unitree Go1 quadrupedal robot confirm the robustness of the proposed framework under various unknown, aperiodic, vertical DRS motions and uncertainties (e.g., slippery and uneven surfaces, solid and liquid loads, and sudden pushes).
未知垂直地面运动下基于 HT-LIP 模型的四足机器人运动鲁棒控制
本文提出了一种分层控制框架,它能在具有一般未知垂直运动的动态刚性表面(DRS)上实现稳健的四足运动。该框架的关键新颖之处在于其高层,即离散时间、可证明稳定的脚步控制器。脚步控制器的基础是一个新的混合、时变、线性倒摆(HT-LIP)模型,该模型维度低,能准确捕捉 DRS 运动过程中机器人的基本动态。然后推导出一组新的充分稳定性条件,直接指导控制器设计,以确保 HT-LIP 模型在一般未知垂直 DRS 运动下的渐近稳定性。此外,脚步控制器被设计成一个计算高效的二次方程程序,其中包含了所提出的 HT-LIP 模型和稳定性条件。中间层将上层生成的所需脚步位置作为输入,生成运动学上可行的全身参考轨迹,然后由下层扭矩控制器进行精确跟踪。在 Unitree Go1 四足机器人上进行的硬件实验证实,在各种未知、非周期性、垂直 DRS 运动和不确定性(例如,湿滑和不平的表面、固体和液体负载以及突然推动)条件下,所提出的框架具有稳健性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信