Distributed Robust Learning based Formation Control of Mobile Robots based on Bioinspired Neural Dynamics

Zhe Xu, Tao Yan, Simon X. Yang, S. Andrew Gadsden, Mohammad Biglarbegian
{"title":"Distributed Robust Learning based Formation Control of Mobile Robots based on Bioinspired Neural Dynamics","authors":"Zhe Xu, Tao Yan, Simon X. Yang, S. Andrew Gadsden, Mohammad Biglarbegian","doi":"arxiv-2403.15716","DOIUrl":null,"url":null,"abstract":"This paper addresses the challenges of distributed formation control in\nmultiple mobile robots, introducing a novel approach that enhances real-world\npracticability. We first introduce a distributed estimator using a variable\nstructure and cascaded design technique, eliminating the need for derivative\ninformation to improve the real time performance. Then, a kinematic tracking\ncontrol method is developed utilizing a bioinspired neural dynamic-based\napproach aimed at providing smooth control inputs and effectively resolving the\nspeed jump issue. Furthermore, to address the challenges for robots operating\nwith completely unknown dynamics and disturbances, a learning-based robust\ndynamic controller is developed. This controller provides real time parameter\nestimates while maintaining its robustness against disturbances. The overall\nstability of the proposed method is proved with rigorous mathematical analysis.\nAt last, multiple comprehensive simulation studies have shown the advantages\nand effectiveness of the proposed method.","PeriodicalId":501062,"journal":{"name":"arXiv - CS - Systems and Control","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.15716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper addresses the challenges of distributed formation control in multiple mobile robots, introducing a novel approach that enhances real-world practicability. We first introduce a distributed estimator using a variable structure and cascaded design technique, eliminating the need for derivative information to improve the real time performance. Then, a kinematic tracking control method is developed utilizing a bioinspired neural dynamic-based approach aimed at providing smooth control inputs and effectively resolving the speed jump issue. Furthermore, to address the challenges for robots operating with completely unknown dynamics and disturbances, a learning-based robust dynamic controller is developed. This controller provides real time parameter estimates while maintaining its robustness against disturbances. The overall stability of the proposed method is proved with rigorous mathematical analysis. At last, multiple comprehensive simulation studies have shown the advantages and effectiveness of the proposed method.
基于生物启发神经动力学的移动机器人分布式鲁棒学习编队控制
本文针对多移动机器人分布式编队控制所面临的挑战,引入了一种可增强现实世界实用性的新方法。我们首先介绍了一种使用可变结构和级联设计技术的分布式估计器,无需导数信息即可提高实时性能。然后,我们利用基于生物启发神经动态的方法开发了一种运动跟踪控制方法,旨在提供平滑的控制输入并有效解决速度跳跃问题。此外,为了解决机器人在完全未知的动态和干扰条件下运行所面临的挑战,还开发了一种基于学习的鲁棒动态控制器。该控制器可提供实时参数估计,同时保持对干扰的鲁棒性。最后,多项综合仿真研究表明了所提方法的优势和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信