Coulomb effect in hybrid double quantum dot-metal nanoparticle systems considering the wetting layer

IF 5.8 2区 物理与天体物理 Q1 OPTICS
Nour A. Nasser, Amin H. Al-Khursan
{"title":"Coulomb effect in hybrid double quantum dot-metal nanoparticle systems considering the wetting layer","authors":"Nour A. Nasser,&nbsp;Amin H. Al-Khursan","doi":"10.1140/epjqt/s40507-024-00233-1","DOIUrl":null,"url":null,"abstract":"<div><p>Many body effects in the wetting layer (WL)-double quantum dot (DQD)-metal nanoparticle (MNP) structure have been studied by modeling the Coulomb scattering rates in this structure. The strong coupling between WL-DQD-MNPs was considered. An orthogonalized plane wave (OPW) is assumed between WL-QD transitions. The transition momenta are calculated accordingly to specify the normalized Rabi frequency on this structure, considering the strong coupling between the WL-DQD-MNP structures. This approach is important for realizing scattering rates, including in-and-out capture and relaxation rates, which are essential for specifying the type of structure used depending on the optimum value of the scattering time required to fit the application. The QD hole capture rate is the highest, and the hole capture times are the shortest. The relaxation times are less than the electron capture times by one order, while they are half of the hole capture times. The capture rates increase with increasing distance <i>R</i> between the DQDs and the MNP. High tunneling increases hole-capture rates and changes the relaxation rates, showing the importance of tunneling in controlling the scattering rates.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"11 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00233-1","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-024-00233-1","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Many body effects in the wetting layer (WL)-double quantum dot (DQD)-metal nanoparticle (MNP) structure have been studied by modeling the Coulomb scattering rates in this structure. The strong coupling between WL-DQD-MNPs was considered. An orthogonalized plane wave (OPW) is assumed between WL-QD transitions. The transition momenta are calculated accordingly to specify the normalized Rabi frequency on this structure, considering the strong coupling between the WL-DQD-MNP structures. This approach is important for realizing scattering rates, including in-and-out capture and relaxation rates, which are essential for specifying the type of structure used depending on the optimum value of the scattering time required to fit the application. The QD hole capture rate is the highest, and the hole capture times are the shortest. The relaxation times are less than the electron capture times by one order, while they are half of the hole capture times. The capture rates increase with increasing distance R between the DQDs and the MNP. High tunneling increases hole-capture rates and changes the relaxation rates, showing the importance of tunneling in controlling the scattering rates.

考虑到润湿层的双量子点-金属纳米粒子混合系统中的库仑效应
通过模拟润湿层(WL)-双量子点(DQD)-金属纳米粒子(MNP)结构中的库仑散射率,研究了该结构中的多体效应。研究考虑了 WL-DQD-MNPs 之间的强耦合。假定 WL-QD 转换之间存在正交平面波(OPW)。考虑到 WL-DQD-MNP 结构之间的强耦合,计算出相应的转换矩,以指定该结构上的归一化拉比频率。这种方法对于实现散射率(包括进出俘获率和弛豫率)非常重要,这对于根据应用所需的散射时间最佳值来指定所使用的结构类型至关重要。QD 的空穴俘获率最高,空穴俘获时间最短。弛豫时间比电子俘获时间短一个数量级,但却是空穴俘获时间的一半。捕获率随着 DQD 与 MNP 之间距离 R 的增加而增加。高隧道效应会增加空穴捕获率并改变弛豫率,这表明隧道效应在控制散射率方面的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
EPJ Quantum Technology
EPJ Quantum Technology Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
7.70
自引率
7.50%
发文量
28
审稿时长
71 days
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following: Quantum measurement, metrology and lithography Quantum complex systems, networks and cellular automata Quantum electromechanical systems Quantum optomechanical systems Quantum machines, engineering and nanorobotics Quantum control theory Quantum information, communication and computation Quantum thermodynamics Quantum metamaterials The effect of Casimir forces on micro- and nano-electromechanical systems Quantum biology Quantum sensing Hybrid quantum systems Quantum simulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信