Digital twin enhanced quality prediction method of powder compaction process

IF 9.1 1区 计算机科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Ying Zuo , Hujie You , Xiaofu Zou , Wei Ji , Fei Tao
{"title":"Digital twin enhanced quality prediction method of powder compaction process","authors":"Ying Zuo ,&nbsp;Hujie You ,&nbsp;Xiaofu Zou ,&nbsp;Wei Ji ,&nbsp;Fei Tao","doi":"10.1016/j.rcim.2024.102762","DOIUrl":null,"url":null,"abstract":"<div><p>During the powder compaction process, process parameters are required for product quality prediction. However, the inadequacy of compaction data leads to difficulties in constructing models for quality prediction. Meanwhile, the existing data generation methods can only generate required data partially, and fail to generate data for extreme operating conditions and difficult-to-measure quality parameters. To address this issue, a digital twin (DT) enhanced quality prediction method for powder compaction process is presented in this paper. First, a DT model of the powder compaction process with multiple dimensions is constructed and validated. Then, to solve the data inadequacy problem, data of process parameters are generated through an orthogonal experimental design, and are imported into the DT model to generate quality parameters, so as to obtain the virtual data. Finally, the quality prediction for the powder compaction process is achieved by the generative adversarial network-deep neural network (GAN-DNN) method. The effectiveness of the generated virtual data and the GAN-DNN method is verified through experimental comparison. On top of point-to-point validation, a quality prediction system applied in a powder compaction line is developed and implemented to demonstrate the end-to-end practicability of the proposed method.</p></div>","PeriodicalId":21452,"journal":{"name":"Robotics and Computer-integrated Manufacturing","volume":null,"pages":null},"PeriodicalIF":9.1000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics and Computer-integrated Manufacturing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0736584524000486","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

During the powder compaction process, process parameters are required for product quality prediction. However, the inadequacy of compaction data leads to difficulties in constructing models for quality prediction. Meanwhile, the existing data generation methods can only generate required data partially, and fail to generate data for extreme operating conditions and difficult-to-measure quality parameters. To address this issue, a digital twin (DT) enhanced quality prediction method for powder compaction process is presented in this paper. First, a DT model of the powder compaction process with multiple dimensions is constructed and validated. Then, to solve the data inadequacy problem, data of process parameters are generated through an orthogonal experimental design, and are imported into the DT model to generate quality parameters, so as to obtain the virtual data. Finally, the quality prediction for the powder compaction process is achieved by the generative adversarial network-deep neural network (GAN-DNN) method. The effectiveness of the generated virtual data and the GAN-DNN method is verified through experimental comparison. On top of point-to-point validation, a quality prediction system applied in a powder compaction line is developed and implemented to demonstrate the end-to-end practicability of the proposed method.

数字孪生增强型粉末压实工艺质量预测方法
在粉末压实过程中,产品质量预测需要工艺参数。然而,压实数据的不足导致难以构建质量预测模型。同时,现有的数据生成方法只能生成部分所需数据,无法生成极端操作条件下的数据和难以测量的质量参数。针对这一问题,本文提出了一种针对粉末压实过程的数字孪生(DT)增强质量预测方法。首先,构建并验证了粉末压制过程的多维数字孪生模型。然后,为解决数据不足问题,通过正交实验设计生成工艺参数数据,并导入 DT 模型生成质量参数,从而获得虚拟数据。最后,通过生成对抗网络-深度神经网络(GAN-DNN)方法实现粉末压实过程的质量预测。通过实验对比,验证了生成虚拟数据和 GAN-DNN 方法的有效性。在点对点验证的基础上,还开发并实施了一个应用于粉末压实生产线的质量预测系统,以证明所提方法的端到端实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Robotics and Computer-integrated Manufacturing
Robotics and Computer-integrated Manufacturing 工程技术-工程:制造
CiteScore
24.10
自引率
13.50%
发文量
160
审稿时长
50 days
期刊介绍: The journal, Robotics and Computer-Integrated Manufacturing, focuses on sharing research applications that contribute to the development of new or enhanced robotics, manufacturing technologies, and innovative manufacturing strategies that are relevant to industry. Papers that combine theory and experimental validation are preferred, while review papers on current robotics and manufacturing issues are also considered. However, papers on traditional machining processes, modeling and simulation, supply chain management, and resource optimization are generally not within the scope of the journal, as there are more appropriate journals for these topics. Similarly, papers that are overly theoretical or mathematical will be directed to other suitable journals. The journal welcomes original papers in areas such as industrial robotics, human-robot collaboration in manufacturing, cloud-based manufacturing, cyber-physical production systems, big data analytics in manufacturing, smart mechatronics, machine learning, adaptive and sustainable manufacturing, and other fields involving unique manufacturing technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信