Recursive identification methods for general stochastic systems with colored noises by using the hierarchical identification principle and the filtering identification idea

IF 7.3 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Feng Ding , Ling Xu , Xiao Zhang , Yihong Zhou , Xiaoli Luan
{"title":"Recursive identification methods for general stochastic systems with colored noises by using the hierarchical identification principle and the filtering identification idea","authors":"Feng Ding ,&nbsp;Ling Xu ,&nbsp;Xiao Zhang ,&nbsp;Yihong Zhou ,&nbsp;Xiaoli Luan","doi":"10.1016/j.arcontrol.2024.100942","DOIUrl":null,"url":null,"abstract":"<div><p>This article reviews and investigates several basic recursive parameter identification methods for a general stochastic system with colored noise (i.e., output-error autoregressive moving average system or Box–Jenkins system). These recursive identification methods are derived by means of the hierarchical identification principle and the filtering identification idea, including a filtered auxiliary-model hierarchical generalized extended stochastic gradient algorithm, a filtered auxiliary-model hierarchical multi-innovation generalized extended stochastic gradient algorithm, a filtered auxiliary-model hierarchical recursive generalized extended gradient algorithm, a filtered auxiliary-model hierarchical multi-innovation recursive generalized extended gradient algorithm, a filtered auxiliary-model hierarchical generalized extended least squares algorithm, and a filtered auxiliary-model hierarchical multi-innovation generalized extended least squares algorithm by using the auxiliary-model identification idea. The presented filtered auxiliary-model hierarchical generalized extended identification algorithms can be extended to other linear and nonlinear systems with colored noises.</p></div>","PeriodicalId":50750,"journal":{"name":"Annual Reviews in Control","volume":"57 ","pages":"Article 100942"},"PeriodicalIF":7.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Reviews in Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1367578824000117","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This article reviews and investigates several basic recursive parameter identification methods for a general stochastic system with colored noise (i.e., output-error autoregressive moving average system or Box–Jenkins system). These recursive identification methods are derived by means of the hierarchical identification principle and the filtering identification idea, including a filtered auxiliary-model hierarchical generalized extended stochastic gradient algorithm, a filtered auxiliary-model hierarchical multi-innovation generalized extended stochastic gradient algorithm, a filtered auxiliary-model hierarchical recursive generalized extended gradient algorithm, a filtered auxiliary-model hierarchical multi-innovation recursive generalized extended gradient algorithm, a filtered auxiliary-model hierarchical generalized extended least squares algorithm, and a filtered auxiliary-model hierarchical multi-innovation generalized extended least squares algorithm by using the auxiliary-model identification idea. The presented filtered auxiliary-model hierarchical generalized extended identification algorithms can be extended to other linear and nonlinear systems with colored noises.

利用分层识别原理和滤波识别思想的有色噪声一般随机系统递归识别方法
本文综述并研究了具有彩色噪声的一般随机系统(即输出误差自回归移动平均系统或盒-詹金斯系统)的几种基本递归参数识别方法。利用辅助模型识别思想的过滤式辅助模型分层递归广义扩展梯度算法、过滤式辅助模型分层多创新递归广义扩展梯度算法、过滤式辅助模型分层广义扩展最小二乘法算法和过滤式辅助模型分层多创新广义扩展最小二乘法算法。所提出的滤波辅助模型分层广义扩展识别算法可扩展到其他具有彩色噪声的线性和非线性系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annual Reviews in Control
Annual Reviews in Control 工程技术-自动化与控制系统
CiteScore
19.00
自引率
2.10%
发文量
53
审稿时长
36 days
期刊介绍: The field of Control is changing very fast now with technology-driven “societal grand challenges” and with the deployment of new digital technologies. The aim of Annual Reviews in Control is to provide comprehensive and visionary views of the field of Control, by publishing the following types of review articles: Survey Article: Review papers on main methodologies or technical advances adding considerable technical value to the state of the art. Note that papers which purely rely on mechanistic searches and lack comprehensive analysis providing a clear contribution to the field will be rejected. Vision Article: Cutting-edge and emerging topics with visionary perspective on the future of the field or how it will bridge multiple disciplines, and Tutorial research Article: Fundamental guides for future studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信