Computational analysis of dimer G6PD structure to elucidate pathogenicity of G6PD variants.

IF 2.1 Q2 MEDICINE, GENERAL & INTERNAL
BioMedicine-Taiwan Pub Date : 2024-03-01 eCollection Date: 2024-01-01 DOI:10.37796/2211-8039.1431
Shamini Chandran, Naveen Eugene Louis, Syazwani Itri Amran, Nurriza Ab Latif, Muaawia Ahmed Hamza, Mona Alonazi
{"title":"Computational analysis of dimer G6PD structure to elucidate pathogenicity of G6PD variants.","authors":"Shamini Chandran, Naveen Eugene Louis, Syazwani Itri Amran, Nurriza Ab Latif, Muaawia Ahmed Hamza, Mona Alonazi","doi":"10.37796/2211-8039.1431","DOIUrl":null,"url":null,"abstract":"<p><p>An inherent genetic enzyme disorder in humans, known as glucose-6-phosphate dehydrogenase (G6PD) deficiency, arises due to specific mutations. While the prevailing approach for investigating G6PD variants involves biochemical analysis, the intricate structural details remain limited, impeding a comprehensive understanding of how different G6PD variants of varying classes impact their functionality. This study 22 examined the dynamic properties of G6PD wild types and six G6PD variants from 23 different classes using molecular dynamic simulation (MDS). The wild-type and variant 24 G6PD structures unveil high fluctuations within the amino acid range of 274-515, the structural NADP<sup>+</sup> binding site, pivotal for enzyme dimerization. Specifically, two variants, G6PD<sub>Zacatecas</sub> (R257L) and G6PD<sub>Durham</sub> (K238R), demonstrate compromised structural stability at the dimer interface, attributable to the disruption of a salt bridge involving Glu 206 and Lys 407, along with the disturbance of hydrogen bonds formed by Asp 421 at the βN-βN sheets. Consequently, this impairment cascades to affect the binding affinity of crucial interactions, such as Lys 171-Glucose-6-Phosphate (G6P) and Lys 171-catalytic NADP<sup>+</sup>, leading to diminished enzyme activity. This study underscores the utility of computational in silico techniques in predicting the structural alterations and flexibility of G6PD variants. This insight holds promise for guiding future endeavors in drug development targeted at mitigating the impacts of G6PD deficiency.</p>","PeriodicalId":51650,"journal":{"name":"BioMedicine-Taiwan","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10962564/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioMedicine-Taiwan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37796/2211-8039.1431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

Abstract

An inherent genetic enzyme disorder in humans, known as glucose-6-phosphate dehydrogenase (G6PD) deficiency, arises due to specific mutations. While the prevailing approach for investigating G6PD variants involves biochemical analysis, the intricate structural details remain limited, impeding a comprehensive understanding of how different G6PD variants of varying classes impact their functionality. This study 22 examined the dynamic properties of G6PD wild types and six G6PD variants from 23 different classes using molecular dynamic simulation (MDS). The wild-type and variant 24 G6PD structures unveil high fluctuations within the amino acid range of 274-515, the structural NADP+ binding site, pivotal for enzyme dimerization. Specifically, two variants, G6PDZacatecas (R257L) and G6PDDurham (K238R), demonstrate compromised structural stability at the dimer interface, attributable to the disruption of a salt bridge involving Glu 206 and Lys 407, along with the disturbance of hydrogen bonds formed by Asp 421 at the βN-βN sheets. Consequently, this impairment cascades to affect the binding affinity of crucial interactions, such as Lys 171-Glucose-6-Phosphate (G6P) and Lys 171-catalytic NADP+, leading to diminished enzyme activity. This study underscores the utility of computational in silico techniques in predicting the structural alterations and flexibility of G6PD variants. This insight holds promise for guiding future endeavors in drug development targeted at mitigating the impacts of G6PD deficiency.

通过对二聚体 G6PD 结构的计算分析,阐明 G6PD 变体的致病性。
葡萄糖-6-磷酸脱氢酶(G6PD)缺乏症是一种人类固有的遗传性酶紊乱,是由于特定的基因突变引起的。虽然研究 G6PD 变体的主流方法涉及生化分析,但复杂的结构细节仍然有限,妨碍了对不同类别的 G6PD 变体如何影响其功能的全面了解。本研究利用分子动力学模拟(MDS)研究了 G6PD 野生型和六种不同类别的 G6PD 变体的动态特性。野生型和变体 24 G6PD 的结构揭示了 274-515 氨基酸范围内的高波动性,这是结构性 NADP+ 结合位点,对酶的二聚化至关重要。具体来说,G6PDZacatecas(R257L)和 G6PDDurham(K238R)这两个变体显示出二聚体界面的结构稳定性受到了影响,这归因于涉及 Glu 206 和 Lys 407 的盐桥被破坏,以及 Asp 421 在 βN-βN 片上形成的氢键被扰乱。因此,这种损伤会一连串地影响关键相互作用的结合亲和力,如 Lys 171-6-磷酸葡萄糖(G6P)和 Lys 171-催化 NADP+,从而导致酶活性降低。这项研究强调了计算硅学技术在预测 G6PD 变体的结构改变和灵活性方面的实用性。这种洞察力有望指导未来的药物开发工作,以减轻 G6PD 缺乏症的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
BioMedicine-Taiwan
BioMedicine-Taiwan MEDICINE, GENERAL & INTERNAL-
CiteScore
2.80
自引率
5.90%
发文量
21
审稿时长
24 weeks
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信