A Family of Swish Diffusion Strategy Based Adaptive Algorithms for Distributed Active Noise Control

IF 2.9 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Rajapantula Kranthi;Vasundhara;Asutosh Kar;Mads Græsbøll Christensen
{"title":"A Family of Swish Diffusion Strategy Based Adaptive Algorithms for Distributed Active Noise Control","authors":"Rajapantula Kranthi;Vasundhara;Asutosh Kar;Mads Græsbøll Christensen","doi":"10.1109/OJSP.2024.3360860","DOIUrl":null,"url":null,"abstract":"The conventional filtered-x least mean square (F-xLMS) algorithm based distributed active noise control (DANC) system's performance suffers in the presence of outliers and impulse like disturbances. In an attempt to reduce noise in such an environment Swish function based algorithms for DANC systems have been proposed presently. The Swish function makes use of the smoothness and unboundedness properties for faster convergence and eliminating vanishing gradient issue. The intention is to employ the smooth approximation of Softplus and the non-convex property of Geman-McClure estimator to propose a Softplus Geman-McClure function. In addition, the bounded nonlinearity of Welsch function which is insensitive to the outliers is utilized with the regularization property of Softsign formulating Softsign Welsch method. Henceforth, this paper proposes a family of robust algorithms employing the Swish diffusion strategy for filtered-x sign, filtered-x LMS, filtered-x Softplus Geman-McClure and filtered-x Softsign Welsch algorithms for DANC systems. The weight update rules are derived for the proposed algorithms and convergence analysis is also carried out. The suggested methods achieve faster convergence in comparison with existing techniques and approximately 1–5 dB improvement in noise cancellation for various noise inputs and impulsive noise interferences.","PeriodicalId":73300,"journal":{"name":"IEEE open journal of signal processing","volume":"5 ","pages":"503-519"},"PeriodicalIF":2.9000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10418455","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of signal processing","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10418455/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The conventional filtered-x least mean square (F-xLMS) algorithm based distributed active noise control (DANC) system's performance suffers in the presence of outliers and impulse like disturbances. In an attempt to reduce noise in such an environment Swish function based algorithms for DANC systems have been proposed presently. The Swish function makes use of the smoothness and unboundedness properties for faster convergence and eliminating vanishing gradient issue. The intention is to employ the smooth approximation of Softplus and the non-convex property of Geman-McClure estimator to propose a Softplus Geman-McClure function. In addition, the bounded nonlinearity of Welsch function which is insensitive to the outliers is utilized with the regularization property of Softsign formulating Softsign Welsch method. Henceforth, this paper proposes a family of robust algorithms employing the Swish diffusion strategy for filtered-x sign, filtered-x LMS, filtered-x Softplus Geman-McClure and filtered-x Softsign Welsch algorithms for DANC systems. The weight update rules are derived for the proposed algorithms and convergence analysis is also carried out. The suggested methods achieve faster convergence in comparison with existing techniques and approximately 1–5 dB improvement in noise cancellation for various noise inputs and impulsive noise interferences.
基于 Swish 扩散策略的分布式主动噪声控制自适应算法系列
传统的基于滤波-x 最小均方(F-xLMS)算法的分布式主动噪声控制(DANC)系统在出现离群值和脉冲干扰时性能会受到影响。为了降低这种环境下的噪声,目前已提出了基于 Swish 函数的 DANC 系统算法。Swish 函数利用平滑性和无约束特性加快收敛速度,并消除梯度消失问题。其目的是利用 Softplus 的平滑逼近和 Geman-McClure 估计器的非凸特性,提出一种 Softplus Geman-McClure 函数。此外,利用 Welsch 函数对异常值不敏感的有界非线性和 Softsign 的正则化特性,提出了 Softsign Welsch 方法。因此,本文针对 DANC 系统的滤波-x Sign、滤波-x LMS、滤波-x Softplus Geman-McClure 和滤波-x Softsign Welsch 算法,提出了一系列采用 Swish 扩散策略的鲁棒算法。对所提算法的权值更新规则进行了推导,并进行了收敛性分析。与现有技术相比,建议的方法收敛速度更快,对于各种噪声输入和脉冲噪声干扰,噪声消除效果提高了约 1-5 dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.30
自引率
0.00%
发文量
0
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信