An Interactive Learning Framework for Scalable Classification of Pathology Images.

Michael Nalisnik, David A Gutman, Jun Kong, Lee Ad Cooper
{"title":"An Interactive Learning Framework for Scalable Classification of Pathology Images.","authors":"Michael Nalisnik, David A Gutman, Jun Kong, Lee Ad Cooper","doi":"10.1109/BigData.2015.7363841","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advances in microscopy imaging and genomics have created an explosion of patient data in the pathology domain. Whole-slide images (WSIs) of tissues can now capture disease processes as they unfold in high resolution, recording the visual cues that have been the basis of pathologic diagnosis for over a century. Each WSI contains billions of pixels and up to a million or more microanatomic objects whose appearances hold important prognostic information. Computational image analysis enables the mining of massive WSI datasets to extract quantitative morphologic features describing the visual qualities of patient tissues. When combined with genomic and clinical variables, this quantitative information provides scientists and clinicians with insights into disease biology and patient outcomes. To facilitate interaction with this rich resource, we have developed a web-based machine-learning framework that enables users to rapidly build classifiers using an intuitive active learning process that minimizes data labeling effort. In this paper we describe the architecture and design of this system, and demonstrate its effectiveness through quantification of glioma brain tumors.</p>","PeriodicalId":74501,"journal":{"name":"Proceedings : ... IEEE International Conference on Big Data. IEEE International Conference on Big Data","volume":"2015 ","pages":"928-935"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5082843/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings : ... IEEE International Conference on Big Data. IEEE International Conference on Big Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BigData.2015.7363841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/12/28 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advances in microscopy imaging and genomics have created an explosion of patient data in the pathology domain. Whole-slide images (WSIs) of tissues can now capture disease processes as they unfold in high resolution, recording the visual cues that have been the basis of pathologic diagnosis for over a century. Each WSI contains billions of pixels and up to a million or more microanatomic objects whose appearances hold important prognostic information. Computational image analysis enables the mining of massive WSI datasets to extract quantitative morphologic features describing the visual qualities of patient tissues. When combined with genomic and clinical variables, this quantitative information provides scientists and clinicians with insights into disease biology and patient outcomes. To facilitate interaction with this rich resource, we have developed a web-based machine-learning framework that enables users to rapidly build classifiers using an intuitive active learning process that minimizes data labeling effort. In this paper we describe the architecture and design of this system, and demonstrate its effectiveness through quantification of glioma brain tumors.

病理图像可扩展分类的交互式学习框架
显微镜成像和基因组学的最新进展使病理学领域的患者数据激增。现在,组织的整张幻灯片图像(WSI)可以高分辨率捕捉疾病的发展过程,记录一个多世纪以来作为病理诊断基础的视觉线索。每张 WSI 图像都包含数十亿像素和多达一百万或更多的微观解剖对象,这些对象的外观蕴含着重要的预后信息。通过计算图像分析,可以对海量 WSI 数据集进行挖掘,提取描述患者组织视觉质量的定量形态特征。结合基因组和临床变量,这些定量信息可为科学家和临床医生提供有关疾病生物学和患者预后的见解。为了促进与这一丰富资源的互动,我们开发了一个基于网络的机器学习框架,使用户能够利用直观的主动学习过程快速构建分类器,从而最大限度地减少数据标注工作。在本文中,我们介绍了该系统的架构和设计,并通过对胶质瘤脑肿瘤的量化来展示其有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信