Using the state of a physically constrained machine learning model trained on the output intensity images to reconstruct the eigenmodes of an optical fiber
Alexander Kabardiadi-Virkovski, Leander Kläber, Thomas Schreiber, Antje Schuschies, Peter Hartmann
{"title":"Using the state of a physically constrained machine learning model trained on the output intensity images to reconstruct the eigenmodes of an optical fiber","authors":"Alexander Kabardiadi-Virkovski, Leander Kläber, Thomas Schreiber, Antje Schuschies, Peter Hartmann","doi":"10.1117/12.3002398","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":517664,"journal":{"name":"Fiber Lasers XXI: Technology and Systems","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fiber Lasers XXI: Technology and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3002398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}