Authorship classification techniques: Bridging textual domains and languages

IF 1 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Arta Misini, A. Kadriu, Ercan Canhasi
{"title":"Authorship classification techniques: Bridging textual domains and\n languages","authors":"Arta Misini, A. Kadriu, Ercan Canhasi","doi":"10.59035/ukbe1226","DOIUrl":null,"url":null,"abstract":"Authorship classification analyzes an author's prior work to identify their\n writing style, a unique trait of each language and individual author. This research aims\n to conduct a thorough comparative analysis of various methods for classifying\n authorship. The study leverages two corpora: AAALitCorpus of Albanian literary texts and\n CCAT10 of English columns. We evaluate model-generated features across different\n configurations. The richness of the features and the breadth of the analysis provide a\n significant understanding of the problem, setting a new standard for comprehensive\n linguistic investigations across multiple languages. The study indicates that machine\n learning algorithms accurately discern authorial writing styles, highlighting the\n complexities of classifying authorship in a cross-linguistic context.","PeriodicalId":42317,"journal":{"name":"International Journal on Information Technologies and Security","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Information Technologies and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59035/ukbe1226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Authorship classification analyzes an author's prior work to identify their writing style, a unique trait of each language and individual author. This research aims to conduct a thorough comparative analysis of various methods for classifying authorship. The study leverages two corpora: AAALitCorpus of Albanian literary texts and CCAT10 of English columns. We evaluate model-generated features across different configurations. The richness of the features and the breadth of the analysis provide a significant understanding of the problem, setting a new standard for comprehensive linguistic investigations across multiple languages. The study indicates that machine learning algorithms accurately discern authorial writing styles, highlighting the complexities of classifying authorship in a cross-linguistic context.
作者分类技术:连接文本领域和语言
作者分类法通过分析作者以前的作品来确定其写作风格,这是每种语言和每个作者的独特特征。本研究旨在对各种作者分类方法进行全面的比较分析。研究利用了两个语料库:AAALitCorpus(阿尔巴尼亚文学文本)和CCAT10(英语专栏)。我们评估了不同配置下模型生成的特征。特征的丰富性和分析的广泛性为理解问题提供了重要依据,为跨多种语言的全面语言学研究设定了新标准。研究表明,机器学习算法能够准确辨别作者的写作风格,突出了跨语言背景下作者身份分类的复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
66.70%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信