Particle swarm optimization algorithm-based nonlinear LS-SVM model for modelling and forecasting time-series data

M. Tl, Prajneshu, Prathima Cm, H. Gr
{"title":"Particle swarm optimization algorithm-based nonlinear LS-SVM model for modelling and forecasting time-series data","authors":"M. Tl, Prajneshu, Prathima Cm, H. Gr","doi":"10.22271/maths.2024.v9.i2a.1638","DOIUrl":null,"url":null,"abstract":"In this article, a novel Nonparametric, Nonlinear Least Squares Support Vector Machine (LS-SVM) methodology is thoroughly studied. The Particle Swarm Optimization (PSO), which is a very efficient population-based global stochastic optimization technique, is employed to estimate the hyper-parameters and time lag of Nonlinear LS-SVM model for time-series modelling. Relevant computer program is written in MATLAB function (m file). The MATLAB and STATISTICA software packages are used for carrying out data analysis. Subsequently, as an illustration, the methodology was applied to all-India annual rainfall time-series data. Superiority of this approach over ANN model is demonstrated using Root Mean Square Error (RMSE) and Mean Absolute Percent Error (MAPE) criteria for data under consideration","PeriodicalId":500025,"journal":{"name":"International journal of statistics and applied mathematics","volume":"483 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of statistics and applied mathematics","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.22271/maths.2024.v9.i2a.1638","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, a novel Nonparametric, Nonlinear Least Squares Support Vector Machine (LS-SVM) methodology is thoroughly studied. The Particle Swarm Optimization (PSO), which is a very efficient population-based global stochastic optimization technique, is employed to estimate the hyper-parameters and time lag of Nonlinear LS-SVM model for time-series modelling. Relevant computer program is written in MATLAB function (m file). The MATLAB and STATISTICA software packages are used for carrying out data analysis. Subsequently, as an illustration, the methodology was applied to all-India annual rainfall time-series data. Superiority of this approach over ANN model is demonstrated using Root Mean Square Error (RMSE) and Mean Absolute Percent Error (MAPE) criteria for data under consideration
基于粒子群优化算法的非线性 LS-SVM 模型用于时间序列数据建模和预测
本文深入研究了一种新型非参数、非线性最小二乘支持向量机(LS-SVM)方法。粒子群优化(PSO)是一种非常有效的基于种群的全局随机优化技术,它被用来估计用于时间序列建模的非线性 LS-SVM 模型的超参数和时滞。相关计算机程序由 MATLAB 函数(m 文件)编写。使用 MATLAB 和 STATISTICA 软件包进行数据分析。随后,将该方法应用于全印度年降雨量时间序列数据,以作说明。使用均方根误差 (RMSE) 和均值绝对误差 (MAPE) 标准对所考虑的数据进行分析,证明该方法优于 ANN 模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信