On extreme quantile region estimation under heavy-tailed elliptical distributions

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY
Jaakko Pere , Pauliina Ilmonen , Lauri Viitasaari
{"title":"On extreme quantile region estimation under heavy-tailed elliptical distributions","authors":"Jaakko Pere ,&nbsp;Pauliina Ilmonen ,&nbsp;Lauri Viitasaari","doi":"10.1016/j.jmva.2024.105314","DOIUrl":null,"url":null,"abstract":"<div><p>Consider the estimation of an extreme quantile region corresponding to a very small probability. Estimation of extreme quantile regions is important but difficult since extreme regions contain only a few or no observations. In this article, we propose an affine equivariant extreme quantile region estimator for heavy-tailed elliptical distributions. The estimator is constructed by extending a well-known univariate extreme quantile estimator. Consistency of the estimator is proved under estimated location and scatter. The practicality of the developed estimator is illustrated with simulations and a real data example.</p></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0047259X24000216/pdfft?md5=9428a79c05ecd5a039851cfc8de51bac&pid=1-s2.0-S0047259X24000216-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X24000216","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Consider the estimation of an extreme quantile region corresponding to a very small probability. Estimation of extreme quantile regions is important but difficult since extreme regions contain only a few or no observations. In this article, we propose an affine equivariant extreme quantile region estimator for heavy-tailed elliptical distributions. The estimator is constructed by extending a well-known univariate extreme quantile estimator. Consistency of the estimator is proved under estimated location and scatter. The practicality of the developed estimator is illustrated with simulations and a real data example.

重尾椭圆分布下的极值量级区域估计
考虑估算与极小概率相对应的极值量级区域。极值量分区域的估计很重要,但却很困难,因为极值区域只包含少数观测值或不包含观测值。在本文中,我们提出了一种针对重尾椭圆分布的仿射等变极端量级区域估计器。该估计器是通过扩展著名的单变量极值量级估计器来构建的。在估计位置和散度条件下,证明了估计器的一致性。通过模拟和真实数据示例说明了所开发估计器的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Multivariate Analysis
Journal of Multivariate Analysis 数学-统计学与概率论
CiteScore
2.40
自引率
25.00%
发文量
108
审稿时长
74 days
期刊介绍: Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data. The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of Copula modeling Functional data analysis Graphical modeling High-dimensional data analysis Image analysis Multivariate extreme-value theory Sparse modeling Spatial statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信