{"title":"Unsupervised question-retrieval approach based on topic keywords filtering and multi-task learning","authors":"Aiguo Shang , Xinjuan Zhu , Michael Danner , Matthias Rätsch","doi":"10.1016/j.csl.2024.101644","DOIUrl":null,"url":null,"abstract":"<div><p>Currently, the majority of retrieval-based question-answering systems depend on supervised training using question pairs. However, there is still a significant need for further exploration of how to employ unsupervised methods to improve the accuracy of retrieval-based question-answering systems. From the perspective of question topic keywords, this paper presents TFCSG, an unsupervised question-retrieval approach based on topic keyword filtering and multi-task learning. Firstly, we design the topic keyword filtering algorithm, which, unlike the topic model, can sequentially filter out the keywords of the question and can provide a training corpus for subsequent unsupervised learning. Then, three tasks are designed in this paper to complete the training of the question-retrieval model. The first task is a question contrastive learning task based on topic keywords repetition strategy, the second is questions and its corresponding sequential topic keywords similarity distribution task, and the third is a sequential topic keywords generation task using questions. These three tasks are trained in parallel in order to obtain quality question representations and thus improve the accuracy of question-retrieval task. Finally, our experimental results on the four publicly available datasets demonstrate the effectiveness of the TFCSG, with an average improvement of 7.1%, 4.4%, and 3.5% in the P@1, MAP, and MRR metrics when using the BERT model compared to the baseline model. The corresponding metrics improved by 5.7%, 3.5% and 3.0% on average when using the RoBERTa model. The accuracy of unsupervised similar question-retrieval task is effectively improved. In particular, the values of P@1, P@5, and P@10 are close, the retrieved similar questions are ranked more advance.</p></div>","PeriodicalId":50638,"journal":{"name":"Computer Speech and Language","volume":"87 ","pages":"Article 101644"},"PeriodicalIF":3.1000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Speech and Language","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885230824000275","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Currently, the majority of retrieval-based question-answering systems depend on supervised training using question pairs. However, there is still a significant need for further exploration of how to employ unsupervised methods to improve the accuracy of retrieval-based question-answering systems. From the perspective of question topic keywords, this paper presents TFCSG, an unsupervised question-retrieval approach based on topic keyword filtering and multi-task learning. Firstly, we design the topic keyword filtering algorithm, which, unlike the topic model, can sequentially filter out the keywords of the question and can provide a training corpus for subsequent unsupervised learning. Then, three tasks are designed in this paper to complete the training of the question-retrieval model. The first task is a question contrastive learning task based on topic keywords repetition strategy, the second is questions and its corresponding sequential topic keywords similarity distribution task, and the third is a sequential topic keywords generation task using questions. These three tasks are trained in parallel in order to obtain quality question representations and thus improve the accuracy of question-retrieval task. Finally, our experimental results on the four publicly available datasets demonstrate the effectiveness of the TFCSG, with an average improvement of 7.1%, 4.4%, and 3.5% in the P@1, MAP, and MRR metrics when using the BERT model compared to the baseline model. The corresponding metrics improved by 5.7%, 3.5% and 3.0% on average when using the RoBERTa model. The accuracy of unsupervised similar question-retrieval task is effectively improved. In particular, the values of P@1, P@5, and P@10 are close, the retrieved similar questions are ranked more advance.
期刊介绍:
Computer Speech & Language publishes reports of original research related to the recognition, understanding, production, coding and mining of speech and language.
The speech and language sciences have a long history, but it is only relatively recently that large-scale implementation of and experimentation with complex models of speech and language processing has become feasible. Such research is often carried out somewhat separately by practitioners of artificial intelligence, computer science, electronic engineering, information retrieval, linguistics, phonetics, or psychology.