Improving the mechanical properties of Cantor-like alloys with Bayesian optimization

Valtteri Torsti, T. Mäkinen, Silvia Bonfanti, J. Koivisto, Mikko J. Alava
{"title":"Improving the mechanical properties of Cantor-like alloys with Bayesian optimization","authors":"Valtteri Torsti, T. Mäkinen, Silvia Bonfanti, J. Koivisto, Mikko J. Alava","doi":"10.1063/5.0179844","DOIUrl":null,"url":null,"abstract":"The search for better compositions in high entropy alloys is a formidable challenge in materials science. Here, we demonstrate a systematic Bayesian optimization method to enhance the mechanical properties of the paradigmatic five-element Cantor alloy in silico. This method utilizes an automated loop with an online database, a Bayesian optimization algorithm, thermodynamic modeling, and molecular dynamics simulations. Starting from the equiatomic Cantor composition, our approach optimizes the relative fractions of its constituent elements, searching for better compositions while maintaining the thermodynamic phase stability. With 24 steps, we find Fe21Cr20Mn5Co20Ni34 with a yield stress improvement of 58%, and with 72 steps, we find Fe6Cr22Mn5Co32Ni35 where the yield stress has improved by 74%. These optimized compositions correspond to Ni-rich medium entropy alloys with enhanced mechanical properties and superior face-centered-cubic phase stability compared to the traditional equiatomic Cantor alloy. The automatic approach devised here paves the way for designing high entropy alloys with tailored properties, opening avenues for numerous potential applications.","PeriodicalId":502250,"journal":{"name":"APL Machine Learning","volume":"269 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0179844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The search for better compositions in high entropy alloys is a formidable challenge in materials science. Here, we demonstrate a systematic Bayesian optimization method to enhance the mechanical properties of the paradigmatic five-element Cantor alloy in silico. This method utilizes an automated loop with an online database, a Bayesian optimization algorithm, thermodynamic modeling, and molecular dynamics simulations. Starting from the equiatomic Cantor composition, our approach optimizes the relative fractions of its constituent elements, searching for better compositions while maintaining the thermodynamic phase stability. With 24 steps, we find Fe21Cr20Mn5Co20Ni34 with a yield stress improvement of 58%, and with 72 steps, we find Fe6Cr22Mn5Co32Ni35 where the yield stress has improved by 74%. These optimized compositions correspond to Ni-rich medium entropy alloys with enhanced mechanical properties and superior face-centered-cubic phase stability compared to the traditional equiatomic Cantor alloy. The automatic approach devised here paves the way for designing high entropy alloys with tailored properties, opening avenues for numerous potential applications.
用贝叶斯优化法改善康托合金的机械性能
在高熵合金中寻找更好的成分是材料科学中的一项艰巨挑战。在这里,我们展示了一种系统化的贝叶斯优化方法,以提高五元素康托合金在硅学中的机械性能。该方法利用了在线数据库、贝叶斯优化算法、热力学建模和分子动力学模拟的自动循环。我们的方法从等原子康托尔成分开始,优化其组成元素的相对比例,在保持热力学相稳定性的同时寻找更好的成分。通过 24 步优化,我们发现 Fe21Cr20Mn5Co20Ni34 的屈服应力提高了 58%;通过 72 步优化,我们发现 Fe6Cr22Mn5Co32Ni35 的屈服应力提高了 74%。与传统的等熵康托合金相比,这些优化成分对应的富镍中熵合金具有更高的机械性能和优异的面心立方相稳定性。本文设计的自动方法为设计具有定制性能的高熵合金铺平了道路,为众多潜在应用开辟了途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信