Generalized independence

IF 0.6 2区 数学 Q2 LOGIC
Fernando Hernández-Hernández , Carlos López-Callejas
{"title":"Generalized independence","authors":"Fernando Hernández-Hernández ,&nbsp;Carlos López-Callejas","doi":"10.1016/j.apal.2024.103440","DOIUrl":null,"url":null,"abstract":"<div><p>We explore different generalizations of the classical concept of independent families on <em>ω</em> following the study initiated by Kunen, Fischer, Eskew and Montoya. We show that under <span><math><msubsup><mrow><mo>(</mo><mi>D</mi><mi>ℓ</mi><mo>)</mo></mrow><mrow><mi>κ</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup></math></span> we can get strongly <em>κ</em>-independent families of size <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>κ</mi></mrow></msup></math></span> and present an equivalence of <span><math><mi>GCH</mi></math></span> in terms of strongly independent families. We merge the two natural ways of generalizing independent families through a filter or an ideal and we focus on the <span><math><mi>C</mi></math></span>-independent families, where <span><math><mi>C</mi></math></span> is the club filter. Also we show a relationship between the existence of <span><math><mi>J</mi></math></span>-independent families and the saturation of the ideal <span><math><mi>J</mi></math></span>.</p></div>","PeriodicalId":50762,"journal":{"name":"Annals of Pure and Applied Logic","volume":"175 7","pages":"Article 103440"},"PeriodicalIF":0.6000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pure and Applied Logic","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016800722400037X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

Abstract

We explore different generalizations of the classical concept of independent families on ω following the study initiated by Kunen, Fischer, Eskew and Montoya. We show that under (D)κ we can get strongly κ-independent families of size 2κ and present an equivalence of GCH in terms of strongly independent families. We merge the two natural ways of generalizing independent families through a filter or an ideal and we focus on the C-independent families, where C is the club filter. Also we show a relationship between the existence of J-independent families and the saturation of the ideal J.

普遍独立性
继库嫩(Kunen)、费舍尔(Fischer)、埃斯奎(Eskew)和蒙托亚(Montoya)发起的研究之后,我们探索了 ω 上独立族经典概念的不同概括。我们证明了在(Dℓ)κ⁎条件下,我们可以得到大小为 2κ 的强κ独立族,并提出了强独立族等价的 GCH。我们合并了通过滤波器或理想来概括独立族的两种自然方法,并重点研究 C-independent 族,其中 C 是俱乐部滤波器。此外,我们还展示了独立于 J 的族的存在与理想 J 的饱和之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
12.50%
发文量
78
审稿时长
200 days
期刊介绍: The journal Annals of Pure and Applied Logic publishes high quality papers in all areas of mathematical logic as well as applications of logic in mathematics, in theoretical computer science and in other related disciplines. All submissions to the journal should be mathematically correct, well written (preferably in English)and contain relevant new results that are of significant interest to a substantial number of logicians. The journal also considers submissions that are somewhat too long to be published by other journals while being too short to form a separate memoir provided that they are of particular outstanding quality and broad interest. In addition, Annals of Pure and Applied Logic occasionally publishes special issues of selected papers from well-chosen conferences in pure and applied logic.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信