Takshak Shende, Ian Eames, Mohammad Hadi Esteki, Yousef Javanmardi, Emad Moeendarbary
{"title":"Impact of drops of a nanoparticle dispersion in a viscoelastic liquid","authors":"Takshak Shende, Ian Eames, Mohammad Hadi Esteki, Yousef Javanmardi, Emad Moeendarbary","doi":"10.1016/j.jnnfm.2024.105221","DOIUrl":null,"url":null,"abstract":"<div><p>The evaluation of nanoparticle dispersion within viscoelastic fluids upon impact on hydrophobic and hydrophilic surfaces is conducted using the Euler-Lagrangian technique. The volume-of-fluid approach is employed in conjunction with the Lagrangian method to model the transport of nanoparticles in a three-phase system (particles-air-viscoelastic fluid). The assessment of nanoparticle dispersion was conducted over a range of Péclet numbers and contact angles (<span><math><mrow><mi>θ</mi><mo>=</mo><mn>30</mn><mo>°</mo></mrow></math></span> and <span><math><mrow><mn>120</mn><mo>°</mo></mrow></math></span>) in three-dimensional (3D) space using the mean square displacement method. The findings suggest that the dispersion of nanoparticles is mainly influenced by normal stress. During droplet impact, nanoparticles exhibit non-Fickian superdiffusive behaviour due to the viscoelastic fluid’s non-Gaussian distribution of velocity and stresses (normal and shear) fields. The wettability of the fluid with solid surfaces substantially affected the dispersion of nanoparticles in the viscoelastic fluid.</p></div>","PeriodicalId":54782,"journal":{"name":"Journal of Non-Newtonian Fluid Mechanics","volume":"327 ","pages":"Article 105221"},"PeriodicalIF":2.7000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0377025724000375/pdfft?md5=330f024441ea0bfebfed29addc47af18&pid=1-s2.0-S0377025724000375-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-Newtonian Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377025724000375","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
The evaluation of nanoparticle dispersion within viscoelastic fluids upon impact on hydrophobic and hydrophilic surfaces is conducted using the Euler-Lagrangian technique. The volume-of-fluid approach is employed in conjunction with the Lagrangian method to model the transport of nanoparticles in a three-phase system (particles-air-viscoelastic fluid). The assessment of nanoparticle dispersion was conducted over a range of Péclet numbers and contact angles ( and ) in three-dimensional (3D) space using the mean square displacement method. The findings suggest that the dispersion of nanoparticles is mainly influenced by normal stress. During droplet impact, nanoparticles exhibit non-Fickian superdiffusive behaviour due to the viscoelastic fluid’s non-Gaussian distribution of velocity and stresses (normal and shear) fields. The wettability of the fluid with solid surfaces substantially affected the dispersion of nanoparticles in the viscoelastic fluid.
期刊介绍:
The Journal of Non-Newtonian Fluid Mechanics publishes research on flowing soft matter systems. Submissions in all areas of flowing complex fluids are welcomed, including polymer melts and solutions, suspensions, colloids, surfactant solutions, biological fluids, gels, liquid crystals and granular materials. Flow problems relevant to microfluidics, lab-on-a-chip, nanofluidics, biological flows, geophysical flows, industrial processes and other applications are of interest.
Subjects considered suitable for the journal include the following (not necessarily in order of importance):
Theoretical, computational and experimental studies of naturally or technologically relevant flow problems where the non-Newtonian nature of the fluid is important in determining the character of the flow. We seek in particular studies that lend mechanistic insight into flow behavior in complex fluids or highlight flow phenomena unique to complex fluids. Examples include
Instabilities, unsteady and turbulent or chaotic flow characteristics in non-Newtonian fluids,
Multiphase flows involving complex fluids,
Problems involving transport phenomena such as heat and mass transfer and mixing, to the extent that the non-Newtonian flow behavior is central to the transport phenomena,
Novel flow situations that suggest the need for further theoretical study,
Practical situations of flow that are in need of systematic theoretical and experimental research. Such issues and developments commonly arise, for example, in the polymer processing, petroleum, pharmaceutical, biomedical and consumer product industries.