Alejandro Gutierrez , Kimberly Amador , Anthony Winder , Matthias Wilms , Jens Fiehler , Nils D. Forkert
{"title":"Annotation-free prediction of treatment-specific tissue outcome from 4D CT perfusion imaging in acute ischemic stroke","authors":"Alejandro Gutierrez , Kimberly Amador , Anthony Winder , Matthias Wilms , Jens Fiehler , Nils D. Forkert","doi":"10.1016/j.compmedimag.2024.102376","DOIUrl":null,"url":null,"abstract":"<div><p>Acute ischemic stroke is a critical health condition that requires timely intervention. Following admission, clinicians typically use perfusion imaging to facilitate treatment decision-making. While deep learning models leveraging perfusion data have demonstrated the ability to predict post-treatment tissue infarction for individual patients, predictions are often represented as binary or probabilistic masks that are not straightforward to interpret or easy to obtain. Moreover, these models typically rely on large amounts of subjectively segmented data and non-standard perfusion analysis techniques. To address these challenges, we propose a novel deep learning approach that directly predicts follow-up computed tomography images from full spatio-temporal 4D perfusion scans through a temporal compression. The results show that this method leads to realistic follow-up image predictions containing the infarcted tissue outcomes. The proposed compression method achieves comparable prediction results to using perfusion maps as inputs but without the need for perfusion analysis or arterial input function selection. Additionally, separate models trained on 45 patients treated with thrombolysis and 102 treated with thrombectomy showed that each model correctly captured the different patient-specific treatment effects as shown by image difference maps. The findings of this work clearly highlight the potential of our method to provide interpretable stroke treatment decision support without requiring manual annotations.</p></div>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":"114 ","pages":"Article 102376"},"PeriodicalIF":5.4000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computerized Medical Imaging and Graphics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0895611124000533","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Acute ischemic stroke is a critical health condition that requires timely intervention. Following admission, clinicians typically use perfusion imaging to facilitate treatment decision-making. While deep learning models leveraging perfusion data have demonstrated the ability to predict post-treatment tissue infarction for individual patients, predictions are often represented as binary or probabilistic masks that are not straightforward to interpret or easy to obtain. Moreover, these models typically rely on large amounts of subjectively segmented data and non-standard perfusion analysis techniques. To address these challenges, we propose a novel deep learning approach that directly predicts follow-up computed tomography images from full spatio-temporal 4D perfusion scans through a temporal compression. The results show that this method leads to realistic follow-up image predictions containing the infarcted tissue outcomes. The proposed compression method achieves comparable prediction results to using perfusion maps as inputs but without the need for perfusion analysis or arterial input function selection. Additionally, separate models trained on 45 patients treated with thrombolysis and 102 treated with thrombectomy showed that each model correctly captured the different patient-specific treatment effects as shown by image difference maps. The findings of this work clearly highlight the potential of our method to provide interpretable stroke treatment decision support without requiring manual annotations.
期刊介绍:
The purpose of the journal Computerized Medical Imaging and Graphics is to act as a source for the exchange of research results concerning algorithmic advances, development, and application of digital imaging in disease detection, diagnosis, intervention, prevention, precision medicine, and population health. Included in the journal will be articles on novel computerized imaging or visualization techniques, including artificial intelligence and machine learning, augmented reality for surgical planning and guidance, big biomedical data visualization, computer-aided diagnosis, computerized-robotic surgery, image-guided therapy, imaging scanning and reconstruction, mobile and tele-imaging, radiomics, and imaging integration and modeling with other information relevant to digital health. The types of biomedical imaging include: magnetic resonance, computed tomography, ultrasound, nuclear medicine, X-ray, microwave, optical and multi-photon microscopy, video and sensory imaging, and the convergence of biomedical images with other non-imaging datasets.