{"title":"Dual-level design for cost-effective sizing and power management of hybrid energy storage in photovoltaic systems","authors":"Xiangqiang Wu, Zhongting Tang, Daniel-Ioan Stroe, Tamas Kerekes","doi":"10.1016/j.geits.2024.100194","DOIUrl":null,"url":null,"abstract":"<div><div>Integration of hybrid energy storage systems (HESS) into photovoltaic (PV) applications has been a hot topic due to their versatility. However, the proper allocation and power management schemes of HESS are challenges under diverse mission profiles. In this paper, a cost-effectiveness-oriented two-level scheme is proposed as a guideline for the PV-HESS system (i.e., PV, Li-ion battery and supercapacitor), to size the system configuration and extend battery lifespan while considering the power ramp-rate constraint. On the first level, a sizing methodology is proposed to balance the self-sufficiency and the energy throughput between the PV system and the grid to achieve the most cost-effectiveness. On the second level, an improved adaptive ramp-rate control strategy is implemented that dynamically distributes the power between the battery and supercapacitor to reduce the battery cycles. The case study presents the whole two-level design process in detail, and verifies the effectiveness of the proposed strategy, where the results show that the battery cycles are reduced by up to 13% over one year without affecting the self-sufficiency of the PV system.</div></div>","PeriodicalId":100596,"journal":{"name":"Green Energy and Intelligent Transportation","volume":"4 3","pages":"Article 100194"},"PeriodicalIF":16.4000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Energy and Intelligent Transportation","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277315372400046X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Integration of hybrid energy storage systems (HESS) into photovoltaic (PV) applications has been a hot topic due to their versatility. However, the proper allocation and power management schemes of HESS are challenges under diverse mission profiles. In this paper, a cost-effectiveness-oriented two-level scheme is proposed as a guideline for the PV-HESS system (i.e., PV, Li-ion battery and supercapacitor), to size the system configuration and extend battery lifespan while considering the power ramp-rate constraint. On the first level, a sizing methodology is proposed to balance the self-sufficiency and the energy throughput between the PV system and the grid to achieve the most cost-effectiveness. On the second level, an improved adaptive ramp-rate control strategy is implemented that dynamically distributes the power between the battery and supercapacitor to reduce the battery cycles. The case study presents the whole two-level design process in detail, and verifies the effectiveness of the proposed strategy, where the results show that the battery cycles are reduced by up to 13% over one year without affecting the self-sufficiency of the PV system.