Polynomial Power Method: An Extension of the Standard Power Method to Para-Hermitian Matrices

Faizan A. Khattak, Ian K. Proudler, Stephan Weiss
{"title":"Polynomial Power Method: An Extension of the Standard Power Method to Para-Hermitian Matrices","authors":"Faizan A. Khattak,&nbsp;Ian K. Proudler,&nbsp;Stephan Weiss","doi":"10.1016/j.sctalk.2024.100326","DOIUrl":null,"url":null,"abstract":"<div><p>This paper expands the concept of the power method to polynomial para-Hermitian matrices in order to extract the principal analytic eigenpair. The proposed technique involves repeatedly multiplying the para-Hermitian matrix by a polynomial vector, followed by an appropriate normalization of the resulting product in each iteration, under the assumption that the principal analytic eigenvalue spectrally majorises the remaining eigenvalues. To restrain the growth in polynomial order of the product vector, truncation is performed after normalization in each iteration. The effectiveness of this proposed method has been verified through simulation results on an ensemble of randomly generated para-Hermitian matrices, demonstrating superior performance compared to existing algorithms.</p></div>","PeriodicalId":101148,"journal":{"name":"Science Talks","volume":"10 ","pages":"Article 100326"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772569324000343/pdfft?md5=12c30cf73c39da3bc3b314a4211dda39&pid=1-s2.0-S2772569324000343-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Talks","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772569324000343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper expands the concept of the power method to polynomial para-Hermitian matrices in order to extract the principal analytic eigenpair. The proposed technique involves repeatedly multiplying the para-Hermitian matrix by a polynomial vector, followed by an appropriate normalization of the resulting product in each iteration, under the assumption that the principal analytic eigenvalue spectrally majorises the remaining eigenvalues. To restrain the growth in polynomial order of the product vector, truncation is performed after normalization in each iteration. The effectiveness of this proposed method has been verified through simulation results on an ensemble of randomly generated para-Hermitian matrices, demonstrating superior performance compared to existing algorithms.

多项式幂方法:将标准幂法扩展至准赫米特矩阵
本文将幂次法的概念扩展到多项式准赫米矩阵,以提取主解析特征对。所提出的技术包括用多项式矢量重复乘以准ermitian 矩阵,然后在每次迭代中对所得到的乘积进行适当的归一化,其假设条件是主解析特征值频谱上会使其余特征值大化。为了抑制乘积向量多项式阶数的增长,在每次迭代归一化后都要进行截断。通过对一组随机生成的副赫米特矩阵的模拟结果,验证了这一拟议方法的有效性,证明其性能优于现有算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信