Quantum algorithms for SCS and text assembling problems

K. Khadiev, Carlos Manuel Bosch Machado,, Ze-Wen Chen, Junde Wu
{"title":"Quantum algorithms for SCS and text assembling problems","authors":"K. Khadiev, Carlos Manuel Bosch Machado,, Ze-Wen Chen, Junde Wu","doi":"10.26421/qic24.3-4-4","DOIUrl":null,"url":null,"abstract":"In this paper, we consider two versions of the Text Assembling problem. We are given a sequence of strings $s^1,\\dots,s^n$ of total length $L$ that is a dictionary, and a string $t$ of length $m$ that is a text. The first version of the problem is assembling $t$ from the dictionary. The second version is the ``Shortest Superstring Problem''(SSP) or the ``Shortest Common Superstring Problem''(SCS). In this case, $t$ is not given, and we should construct the shortest string (we call it superstring) that contains each string from the given sequence as a substring.These problems are connected with the sequence assembly method for reconstructing a long DNA sequence from small fragments. For both problems, we suggest new quantum algorithms that work better than their classical counterparts. In the first case, we present a quantum algorithm with $O(m+\\log m\\sqrt{nL})$ query complexity. In the case of SSP, we present a quantum algorithm with $\\tilde{O}(n^3 1.728^n +L +n^{1.5}\\sqrt{L})$ query complexity. Here $\\tilde{O}$ hides not only constants but logarithms of $L$ and $n$ also.","PeriodicalId":106838,"journal":{"name":"Quantum Information & Computation","volume":"35 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information & Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26421/qic24.3-4-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider two versions of the Text Assembling problem. We are given a sequence of strings $s^1,\dots,s^n$ of total length $L$ that is a dictionary, and a string $t$ of length $m$ that is a text. The first version of the problem is assembling $t$ from the dictionary. The second version is the ``Shortest Superstring Problem''(SSP) or the ``Shortest Common Superstring Problem''(SCS). In this case, $t$ is not given, and we should construct the shortest string (we call it superstring) that contains each string from the given sequence as a substring.These problems are connected with the sequence assembly method for reconstructing a long DNA sequence from small fragments. For both problems, we suggest new quantum algorithms that work better than their classical counterparts. In the first case, we present a quantum algorithm with $O(m+\log m\sqrt{nL})$ query complexity. In the case of SSP, we present a quantum algorithm with $\tilde{O}(n^3 1.728^n +L +n^{1.5}\sqrt{L})$ query complexity. Here $\tilde{O}$ hides not only constants but logarithms of $L$ and $n$ also.
SCS 和文本组装问题的量子算法
在本文中,我们考虑了两个版本的文本组装问题。我们给定一个总长度为 $L$ 的字符串序列 $s^1,\dots,s^n$,它是一本字典,以及一个长度为 $m$ 的字符串 $t$,它是一段文本。第一个版本的问题是从字典中拼凑出 $t$。第二个版本是 "最短超弦问题"(SSP)或 "最短普通超弦问题"(SCS)。在这种情况下,$t$ 是不给定的,我们应该构建包含给定序列中每个字符串作为子串的最短字符串(我们称之为超字符串)。对于这两个问题,我们都提出了比经典算法更有效的新量子算法。在第一种情况下,我们提出了一种查询复杂度为 $O(m+\log m\sqrt{nL})$ 的量子算法。对于 SSP,我们提出了一种查询复杂度为 $\tilde{O}(n^3 1.728^n +L +n^{1.5}\sqrt{L})$ 的量子算法。这里的 $\tilde{O}$ 不仅隐藏了常数,还隐藏了 $L$ 和 $n$ 的对数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信