Existence of periodic solutions and stability for a nonlinear system of neutral differential equations

IF 0.8 4区 数学 Q2 MATHEMATICS
Yang Li, Guiling Chen
{"title":"Existence of periodic solutions and stability for a nonlinear system of neutral differential equations","authors":"Yang Li, Guiling Chen","doi":"10.58997/ejde.2024.21","DOIUrl":null,"url":null,"abstract":"In this article, we study the existence and uniqueness of periodic solutions, and stability of the zero solution to the nonlinear neutral system $$ \\frac{d}{dt}x(t)=A(t)h\\big(x(t-\\tau_1(t))\\big)+\\frac{d}{dt}Q\\big(t,x(t-\\tau_2(t))\\big) +G\\big(t,x(t),x(t-\\tau_2(t))\\big). $$ We use integrating factors to transform the neutral differential equation into an equivalent integral equation. Then we construct appropriate mappings and employ Krasnoselskii's fixed point theorem to show the existence of a periodic solution. We also use the contraction mapping principle to show the existence of a unique periodic solution and the asymptotic stability of the zero solution. Our results generalize the corresponding results in the existing literature. An example is given to illustrate our results.For more information see https://ejde.math.txstate.edu/Volumes/2024/21/abstr.html","PeriodicalId":49213,"journal":{"name":"Electronic Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.58997/ejde.2024.21","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we study the existence and uniqueness of periodic solutions, and stability of the zero solution to the nonlinear neutral system $$ \frac{d}{dt}x(t)=A(t)h\big(x(t-\tau_1(t))\big)+\frac{d}{dt}Q\big(t,x(t-\tau_2(t))\big) +G\big(t,x(t),x(t-\tau_2(t))\big). $$ We use integrating factors to transform the neutral differential equation into an equivalent integral equation. Then we construct appropriate mappings and employ Krasnoselskii's fixed point theorem to show the existence of a periodic solution. We also use the contraction mapping principle to show the existence of a unique periodic solution and the asymptotic stability of the zero solution. Our results generalize the corresponding results in the existing literature. An example is given to illustrate our results.For more information see https://ejde.math.txstate.edu/Volumes/2024/21/abstr.html
非线性中性微分方程系统的周期解存在性和稳定性
本文将研究周期解的存在性和唯一性、以及非线性中性系统 $$ x(t)=A(t)h\big(x(t-\tau_1(t))\big)+\frac{d}{dt}Q\big(t,x(t-\tau_2(t))\big) +G\big(t,x(t),x(t-\tau_2(t))\big) 的零解的稳定性。$$ 我们使用积分因子将中性微分方程转化为等价积分方程。然后,我们构建适当的映射,并利用 Krasnoselskii 定点定理证明周期解的存在。我们还利用收缩映射原理证明了唯一周期解的存在和零解的渐近稳定性。我们的结果概括了现有文献中的相应结果。举例说明我们的结果。更多信息,请参阅 https://ejde.math.txstate.edu/Volumes/2024/21/abstr.html。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electronic Journal of Differential Equations
Electronic Journal of Differential Equations MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.50
自引率
14.30%
发文量
1
审稿时长
3 months
期刊介绍: All topics on differential equations and their applications (ODEs, PDEs, integral equations, delay equations, functional differential equations, etc.) will be considered for publication in Electronic Journal of Differential Equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信