A sum rate maximization problem in uplink MIMO with RSMA systems

Phung Truong
{"title":"A sum rate maximization problem in uplink MIMO with RSMA systems","authors":"Phung Truong","doi":"10.46223/hcmcoujs.tech.en.14.1.2955.2024","DOIUrl":null,"url":null,"abstract":"This study explores the problem of maximizing the sum rate in uplink multi-user Multiple-Input Multiple-Output (MIMO) using Rate-Splitting Multiple Access (RSMA) systems. The investigation revolves around the scenario where the Users (UEs) are single-antenna nodes transmitting data to a multi-antenna Base Station (BS) through the RSMA technique. The optimization process encompasses determining parameters such as UEs’ transmit powers, decoding order, and detection vector at the BS. An approach based on Deep Reinforcement Learning (DRL) is introduced to address this challenge. This DRL framework involves an action-refined stage and applies a Deep Deterministic Policy Gradient (DDPG)-based strategy. Simulation outcomes effectively demonstrate the convergence of the proposed DRL framework, where it converges after approximately 1,800 episodes. Also, the results prove the superior performance of the proposed method when compared to established benchmark strategies, where it is up to 45% and 86% higher than the local search and random schemes, respectively.","PeriodicalId":512408,"journal":{"name":"HO CHI MINH CITY OPEN UNIVERSITY JOURNAL OF SCIENCE - ENGINEERING AND TECHNOLOGY","volume":"11 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HO CHI MINH CITY OPEN UNIVERSITY JOURNAL OF SCIENCE - ENGINEERING AND TECHNOLOGY","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46223/hcmcoujs.tech.en.14.1.2955.2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the problem of maximizing the sum rate in uplink multi-user Multiple-Input Multiple-Output (MIMO) using Rate-Splitting Multiple Access (RSMA) systems. The investigation revolves around the scenario where the Users (UEs) are single-antenna nodes transmitting data to a multi-antenna Base Station (BS) through the RSMA technique. The optimization process encompasses determining parameters such as UEs’ transmit powers, decoding order, and detection vector at the BS. An approach based on Deep Reinforcement Learning (DRL) is introduced to address this challenge. This DRL framework involves an action-refined stage and applies a Deep Deterministic Policy Gradient (DDPG)-based strategy. Simulation outcomes effectively demonstrate the convergence of the proposed DRL framework, where it converges after approximately 1,800 episodes. Also, the results prove the superior performance of the proposed method when compared to established benchmark strategies, where it is up to 45% and 86% higher than the local search and random schemes, respectively.
带 RSMA 的上行多输入多输出系统中的总速率最大化问题
本研究探讨了在上行链路多用户多输入多输出(MIMO)系统中使用速率分割多路访问(RSMA)最大化总和速率的问题。研究围绕用户(UE)是通过 RSMA 技术向多天线基站(BS)传输数据的单天线节点这一场景展开。优化过程包括确定 UE 的发射功率、解码顺序和 BS 的检测向量等参数。为应对这一挑战,引入了一种基于深度强化学习(DRL)的方法。该 DRL 框架包括一个行动提炼阶段,并应用了基于深度确定性策略梯度(DDPG)的策略。仿真结果有效地证明了所提出的 DRL 框架的收敛性,即在大约 1,800 个事件后收敛。此外,仿真结果还证明,与已有的基准策略相比,所提出的方法具有卓越的性能,比局部搜索和随机方案分别高出 45% 和 86%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信