{"title":"Towards lightweight military object detection","authors":"Zhigang Li, Wenhao Nian, Xiaochuan Sun, Shujie Li","doi":"10.3233/jifs-234127","DOIUrl":null,"url":null,"abstract":"Military object military object detection technology serves as the foundation and critical component for reconnaissance and command decision-making, playing a significant role in information-based and intelligent warfare. However, many existing military object detection models focus on exploring deeper and more complex architectures, which results in models with a large number of parameters. This makes them unsuitable for inference on mobile or resource-constrained combat equipment, such as combat helmets and reconnaissance Unmanned Aerial Vehicles (UAVs). To tackle this problem, this paper proposes a lightweight detection framework. A CSP-GhostnetV2 module is proposed in our method to make the feature extraction network more lightweight while extracting more effective information. Furthermore, to fuse multiscale information in low-computational scenarios, GSConv and the proposed CSP-RepGhost are used to form a lightweight feature aggregation network. The experimental results demonstrate that our proposed lightweight model has significant advantages in detection accuracy and efficiency compared to other detection algorithms.","PeriodicalId":509313,"journal":{"name":"Journal of Intelligent & Fuzzy Systems","volume":"21 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jifs-234127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Military object military object detection technology serves as the foundation and critical component for reconnaissance and command decision-making, playing a significant role in information-based and intelligent warfare. However, many existing military object detection models focus on exploring deeper and more complex architectures, which results in models with a large number of parameters. This makes them unsuitable for inference on mobile or resource-constrained combat equipment, such as combat helmets and reconnaissance Unmanned Aerial Vehicles (UAVs). To tackle this problem, this paper proposes a lightweight detection framework. A CSP-GhostnetV2 module is proposed in our method to make the feature extraction network more lightweight while extracting more effective information. Furthermore, to fuse multiscale information in low-computational scenarios, GSConv and the proposed CSP-RepGhost are used to form a lightweight feature aggregation network. The experimental results demonstrate that our proposed lightweight model has significant advantages in detection accuracy and efficiency compared to other detection algorithms.