Energy Balanced Self-Organizing Networks Algorithm for Three-Dimensional Internet of Things

IF 0.9 Q4 AUTOMATION & CONTROL SYSTEMS
Amin Suharjono
{"title":"Energy Balanced Self-Organizing Networks Algorithm for Three-Dimensional Internet of Things","authors":"Amin Suharjono","doi":"10.20965/ijat.2024.p0316","DOIUrl":null,"url":null,"abstract":"Internet of Things (IoT) is developing rapidly with wider application fields. IoT’s main infrastructure is called a wireless sensor network (WSN). Hence, WSN must be able to operate on various network models. Multi-hop clustering is considered a solution for adapting to various network sizes. Multi-hop clustering must be designed to maintain the balance of energy consumption between nodes, and many algorithms have been proposed for this purpose. However, most clustering algorithms are designed with the assumption that the network is a two-dimensional plane. In many applications, WSN is more appropriately modeled as a three-dimensional (3D) network, for example, the WSN application for structural health monitoring or underwater wireless sensor networks. Here, a clustering algorithm for 3D-WSN is proposed. This algorithm is developed based on an analysis of the balance of energy consumption, such that the network lifetime is expected to be longer. The main novelty of our algorithm is the utilization of multi-hop layered transmission. From the simulation, the performance of the proposed algorithm exhibits a good energy balance compared to an un-balanced analysis.","PeriodicalId":43716,"journal":{"name":"International Journal of Automation Technology","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automation Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/ijat.2024.p0316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Internet of Things (IoT) is developing rapidly with wider application fields. IoT’s main infrastructure is called a wireless sensor network (WSN). Hence, WSN must be able to operate on various network models. Multi-hop clustering is considered a solution for adapting to various network sizes. Multi-hop clustering must be designed to maintain the balance of energy consumption between nodes, and many algorithms have been proposed for this purpose. However, most clustering algorithms are designed with the assumption that the network is a two-dimensional plane. In many applications, WSN is more appropriately modeled as a three-dimensional (3D) network, for example, the WSN application for structural health monitoring or underwater wireless sensor networks. Here, a clustering algorithm for 3D-WSN is proposed. This algorithm is developed based on an analysis of the balance of energy consumption, such that the network lifetime is expected to be longer. The main novelty of our algorithm is the utilization of multi-hop layered transmission. From the simulation, the performance of the proposed algorithm exhibits a good energy balance compared to an un-balanced analysis.
三维物联网的能量平衡自组织网络算法
物联网(IoT)发展迅速,应用领域日益广泛。物联网的主要基础设施被称为无线传感器网络(WSN)。 因此,WSN 必须能够在各种网络模式下运行。多跳聚类被认为是适应各种网络规模的解决方案。多跳聚类的设计必须保持节点之间的能量消耗平衡,为此提出了许多算法。然而,大多数聚类算法的设计假设网络是一个二维平面。在许多应用中,将 WSN 建模为三维(3D)网络更为合适,例如用于结构健康监测或水下无线传感器网络的 WSN 应用。本文提出了一种用于三维 WSN 的聚类算法。该算法是在分析能量消耗平衡的基础上开发的,因此网络寿命有望延长。我们算法的主要创新点是利用多跳分层传输。通过仿真,与非平衡分析相比,所提算法的性能表现出良好的能量平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Automation Technology
International Journal of Automation Technology AUTOMATION & CONTROL SYSTEMS-
CiteScore
2.10
自引率
36.40%
发文量
96
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信