A. K. Nandakumaran, Abu Sufian, Renjith Thazhathethil
{"title":"Homogenization of Semi-linear Optimal Control Problems on Oscillating Domains with Matrix Coefficients","authors":"A. K. Nandakumaran, Abu Sufian, Renjith Thazhathethil","doi":"10.1007/s00245-024-10113-w","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, we study the homogenization of optimal control problems subject to second-order semi-linear elliptic PDEs with matrix coefficients in two different types of oscillating domains: a circular domain and a domain with general low-dimensional oscillations. The cost functionals considered are of general energy type with oscillating matrix coefficients, and the coefficient matrix in the cost functional is allowed to differ from the coefficient matrix in the constrained PDE. We prove well-defined limit problems for both domains and obtain explicit forms for the limiting coefficient matrices of the cost functionals and constrained PDEs. As expected, the coefficient matrix of the limit cost functional is a combination of the original cost functional’s and constrained PDE’s coefficient matrices.</p></div>","PeriodicalId":55566,"journal":{"name":"Applied Mathematics and Optimization","volume":"89 2","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Optimization","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00245-024-10113-w","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, we study the homogenization of optimal control problems subject to second-order semi-linear elliptic PDEs with matrix coefficients in two different types of oscillating domains: a circular domain and a domain with general low-dimensional oscillations. The cost functionals considered are of general energy type with oscillating matrix coefficients, and the coefficient matrix in the cost functional is allowed to differ from the coefficient matrix in the constrained PDE. We prove well-defined limit problems for both domains and obtain explicit forms for the limiting coefficient matrices of the cost functionals and constrained PDEs. As expected, the coefficient matrix of the limit cost functional is a combination of the original cost functional’s and constrained PDE’s coefficient matrices.
期刊介绍:
The Applied Mathematics and Optimization Journal covers a broad range of mathematical methods in particular those that bridge with optimization and have some connection with applications. Core topics include calculus of variations, partial differential equations, stochastic control, optimization of deterministic or stochastic systems in discrete or continuous time, homogenization, control theory, mean field games, dynamic games and optimal transport. Algorithmic, data analytic, machine learning and numerical methods which support the modeling and analysis of optimization problems are encouraged. Of great interest are papers which show some novel idea in either the theory or model which include some connection with potential applications in science and engineering.