Few-Shot Fine-Grained Image Classification: A Comprehensive Review

AI Pub Date : 2024-03-06 DOI:10.3390/ai5010020
Jie Ren, Changmiao Li, Yaohui An, Weichuan Zhang, Changming Sun
{"title":"Few-Shot Fine-Grained Image Classification: A Comprehensive Review","authors":"Jie Ren, Changmiao Li, Yaohui An, Weichuan Zhang, Changming Sun","doi":"10.3390/ai5010020","DOIUrl":null,"url":null,"abstract":"Few-shot fine-grained image classification (FSFGIC) methods refer to the classification of images (e.g., birds, flowers, and airplanes) belonging to different subclasses of the same species by a small number of labeled samples. Through feature representation learning, FSFGIC methods can make better use of limited sample information, learn more discriminative feature representations, greatly improve the classification accuracy and generalization ability, and thus achieve better results in FSFGIC tasks. In this paper, starting from the definition of FSFGIC, a taxonomy of feature representation learning for FSFGIC is proposed. According to this taxonomy, we discuss key issues on FSFGIC (including data augmentation, local and/or global deep feature representation learning, class representation learning, and task-specific feature representation learning). In addition, the existing popular datasets, current challenges and future development trends of feature representation learning on FSFGIC are also described.","PeriodicalId":503525,"journal":{"name":"AI","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ai5010020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Few-shot fine-grained image classification (FSFGIC) methods refer to the classification of images (e.g., birds, flowers, and airplanes) belonging to different subclasses of the same species by a small number of labeled samples. Through feature representation learning, FSFGIC methods can make better use of limited sample information, learn more discriminative feature representations, greatly improve the classification accuracy and generalization ability, and thus achieve better results in FSFGIC tasks. In this paper, starting from the definition of FSFGIC, a taxonomy of feature representation learning for FSFGIC is proposed. According to this taxonomy, we discuss key issues on FSFGIC (including data augmentation, local and/or global deep feature representation learning, class representation learning, and task-specific feature representation learning). In addition, the existing popular datasets, current challenges and future development trends of feature representation learning on FSFGIC are also described.
少镜头精细图像分类:全面回顾
少镜头细粒度图像分类(FSFGIC)方法是指通过少量标注样本对属于同一物种不同子类的图像(如鸟类、花卉和飞机)进行分类。通过特征表征学习,FSFGIC 方法可以更好地利用有限的样本信息,学习更具区分性的特征表征,大大提高分类准确率和泛化能力,从而在 FSFGIC 任务中取得更好的效果。本文从 FSFGIC 的定义出发,提出了 FSFGIC 特征表征学习的分类方法。根据该分类法,我们讨论了 FSFGIC 的关键问题(包括数据增强、局部和/或全局深度特征表征学习、类表征学习和特定任务特征表征学习)。此外,还介绍了 FSFGIC 特征表征学习的现有流行数据集、当前挑战和未来发展趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
AI
AI
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信