Privacy-Preserving and Cross-Domain Human Sensing by Federated Domain Adaptation with Semantic Knowledge Correction

Kaijie Gong, Yi Gao, Wei Dong
{"title":"Privacy-Preserving and Cross-Domain Human Sensing by Federated Domain Adaptation with Semantic Knowledge Correction","authors":"Kaijie Gong, Yi Gao, Wei Dong","doi":"10.1145/3643503","DOIUrl":null,"url":null,"abstract":"Federated Learning (FL) enables distributed training of human sensing models in a privacy-preserving manner. While promising, federated global models suffer from cross-domain accuracy degradation when the labeled source domains statistically differ from the unlabeled target domain. To tackle this problem, recent methods perform pairwise computation on the source and target domains to minimize the domain discrepancy by adversarial strategy. However, these methods are limited by the fact that pairwise source-target adversarial alignment alone only achieves domain-level alignment, which entails the alignment of domain-invariant as well as environment-dependent features. The misalignment of environment-dependent features may cause negative impact on the performance of the federated global model. In this paper, we introduce FDAS, a Federated adversarial Domain Adaptation with Semantic Knowledge Correction method. FDAS achieves concurrent alignment at both domain and semantic levels to improve the semantic quality of the aligned features, thereby reducing the misalignment of environment-dependent features. Moreover, we design a cross-domain semantic similarity metric and further devise feature selection and feature refinement mechanisms to enhance the two-level alignment. In addition, we propose a similarity-aware model fine-tuning strategy to further improve the target model performance. We evaluate the performance of FDAS extensively on four public and a real-world human sensing datasets. Extensive experiments demonstrate the superior effectiveness of FDAS and its potential in the real-world ubiquitous computing scenarios.","PeriodicalId":20463,"journal":{"name":"Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.","volume":"31 2","pages":"6:1-6:26"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3643503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Federated Learning (FL) enables distributed training of human sensing models in a privacy-preserving manner. While promising, federated global models suffer from cross-domain accuracy degradation when the labeled source domains statistically differ from the unlabeled target domain. To tackle this problem, recent methods perform pairwise computation on the source and target domains to minimize the domain discrepancy by adversarial strategy. However, these methods are limited by the fact that pairwise source-target adversarial alignment alone only achieves domain-level alignment, which entails the alignment of domain-invariant as well as environment-dependent features. The misalignment of environment-dependent features may cause negative impact on the performance of the federated global model. In this paper, we introduce FDAS, a Federated adversarial Domain Adaptation with Semantic Knowledge Correction method. FDAS achieves concurrent alignment at both domain and semantic levels to improve the semantic quality of the aligned features, thereby reducing the misalignment of environment-dependent features. Moreover, we design a cross-domain semantic similarity metric and further devise feature selection and feature refinement mechanisms to enhance the two-level alignment. In addition, we propose a similarity-aware model fine-tuning strategy to further improve the target model performance. We evaluate the performance of FDAS extensively on four public and a real-world human sensing datasets. Extensive experiments demonstrate the superior effectiveness of FDAS and its potential in the real-world ubiquitous computing scenarios.
通过具有语义知识校正功能的联合域适应技术实现隐私保护和跨域人体感应
联合学习(FL)能够以保护隐私的方式对人类传感模型进行分布式训练。虽然联合全局模型前景广阔,但当标记的源域与未标记的目标域在统计上存在差异时,联合全局模型就会出现跨域精度下降的问题。为了解决这个问题,最近的方法通过对抗策略对源域和目标域进行成对计算,以最小化域差异。然而,这些方法的局限性在于,单独的源-目标成对对抗对齐只能实现领域级对齐,这就需要对领域不变特征和环境依赖特征进行对齐。环境相关特征的错误配准可能会对联合全局模型的性能造成负面影响。在本文中,我们介绍了一种具有语义知识校正功能的联邦对抗性域适应方法(FDAS)。FDAS 在领域和语义两个层面实现并发对齐,以提高对齐特征的语义质量,从而减少依赖于环境的特征的错误对齐。此外,我们还设计了一种跨领域语义相似度量,并进一步设计了特征选择和特征细化机制,以增强两级对齐。此外,我们还提出了一种相似性感知模型微调策略,以进一步提高目标模型的性能。我们在四个公开数据集和一个真实世界的人类传感数据集上广泛评估了 FDAS 的性能。广泛的实验证明了 FDAS 的卓越功效及其在现实世界泛在计算场景中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信