Zhizhang Hu, Amir Radmehr, Yue Zhang, Shijia Pan, Phuc Nguyen
{"title":"IOTeeth: Intra-Oral Teeth Sensing System for Dental Occlusal Diseases Recognition","authors":"Zhizhang Hu, Amir Radmehr, Yue Zhang, Shijia Pan, Phuc Nguyen","doi":"10.1145/3643516","DOIUrl":null,"url":null,"abstract":"While occlusal diseases - the main cause of tooth loss -- significantly impact patients' teeth and well-being, they are the most underdiagnosed dental diseases nowadays. Experiencing occlusal diseases could result in difficulties in eating, speaking, and chronicle headaches, ultimately impacting patients' quality of life. Although attempts have been made to develop sensing systems for teeth activity monitoring, solutions that support sufficient sensing resolution for occlusal monitoring are missing. To fill that gap, this paper presents IOTeeth, a cost-effective and automated intra-oral sensing system for continuous and fine-grained monitoring of occlusal diseases. The IOTeeth system includes an intra-oral piezoelectric-based sensing array integrated into a dental retainer platform to support reliable occlusal disease recognition. IOTeeth focuses on biting and grinding activities from the canines and front teeth, which contain essential information of occlusion. IOTeeth's intra-oral wearable collects signals from the sensors and fetches them into a lightweight and robust deep learning model called Physioaware Attention Network (PAN Net) for occlusal disease recognition. We evaluate IOTeeth with 12 articulator teeth models from dental clinic patients. Evaluation results show an F1 score of 0.97 for activity recognition with leave-one-out validation and an average F1 score of 0.92 for dental disease recognition for different activities with leave-one-out validation.","PeriodicalId":20463,"journal":{"name":"Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.","volume":"23 4","pages":"7:1-7:29"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3643516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
While occlusal diseases - the main cause of tooth loss -- significantly impact patients' teeth and well-being, they are the most underdiagnosed dental diseases nowadays. Experiencing occlusal diseases could result in difficulties in eating, speaking, and chronicle headaches, ultimately impacting patients' quality of life. Although attempts have been made to develop sensing systems for teeth activity monitoring, solutions that support sufficient sensing resolution for occlusal monitoring are missing. To fill that gap, this paper presents IOTeeth, a cost-effective and automated intra-oral sensing system for continuous and fine-grained monitoring of occlusal diseases. The IOTeeth system includes an intra-oral piezoelectric-based sensing array integrated into a dental retainer platform to support reliable occlusal disease recognition. IOTeeth focuses on biting and grinding activities from the canines and front teeth, which contain essential information of occlusion. IOTeeth's intra-oral wearable collects signals from the sensors and fetches them into a lightweight and robust deep learning model called Physioaware Attention Network (PAN Net) for occlusal disease recognition. We evaluate IOTeeth with 12 articulator teeth models from dental clinic patients. Evaluation results show an F1 score of 0.97 for activity recognition with leave-one-out validation and an average F1 score of 0.92 for dental disease recognition for different activities with leave-one-out validation.