Quali-quanti visual methods and political bots

J. Omena, Thais Lobo, Giulia Tucci, Elias Bitencourt, Emillie de Keulenaar, Francisco Kerche, Jason Chao, Marius Liedtke, Mengying Li, Maria Luiza Paschoal, Ilya Lavrov
{"title":"Quali-quanti visual methods and political bots","authors":"J. Omena, Thais Lobo, Giulia Tucci, Elias Bitencourt, Emillie de Keulenaar, Francisco Kerche, Jason Chao, Marius Liedtke, Mengying Li, Maria Luiza Paschoal, Ilya Lavrov","doi":"10.33621/jdsr.v6i1.215","DOIUrl":null,"url":null,"abstract":"\nComputational social science research on automated social media accounts, colloquially dubbed “bots”, has tended to rely on binary verification methods to detect bot operations on social media. Typically focused on textual data from Twitter (now rebranded as \"X\"), these inference-based methods are prone to finding false positives and failing to understand the subtler ways in which bots operate over time, through visual content and in particular contexts. This research brings methodological contributions to such studies, focusing on what it calls “bolsobots” in Brazilian social media. Named after former Brazilian President Jair Bolsonaro, the bolsobots refer to the extensive and skilful usage of partial or fully automated accounts by marketing teams, hackers, activists or campaign supporters. These accounts leverage online political culture to sway public opinion for or against public policies, opposition figures, or Bolsonaro himself. Drawing on empirical case studies, this paper implements quali-quanti visual methods to operationalise specific techniques for interpreting bot-associated image collections and textual content across Instagram, TikTok and Twitter/X. To unveil the modus operandi of bolsobots, we map the networks of users they follow (“following networks”), explore the visual-textual content they post, and observe the strategies they deploy to adapt to platform content moderation. Such analyses tackle methodological challenges inherent in bot studies by employing three key strategies: 1) designing context-sensitive queries and curating datasets with platforms’ interfaces and search engines to mitigate the limitations of bot scoring detectors, 2) engaging qualitatively with data visualisations to understand the vernaculars of bots, and 3) adopting a non-binary analysis framework that contextualises bots within their socio-technical environments. By acknowledging the intricate interplay between bots, user and platform cultures, this paper contributes to method innovation on bot studies and emerging quali-quanti visual methods literature.\n","PeriodicalId":475991,"journal":{"name":"Journal of digital social research","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of digital social research","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.33621/jdsr.v6i1.215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Computational social science research on automated social media accounts, colloquially dubbed “bots”, has tended to rely on binary verification methods to detect bot operations on social media. Typically focused on textual data from Twitter (now rebranded as "X"), these inference-based methods are prone to finding false positives and failing to understand the subtler ways in which bots operate over time, through visual content and in particular contexts. This research brings methodological contributions to such studies, focusing on what it calls “bolsobots” in Brazilian social media. Named after former Brazilian President Jair Bolsonaro, the bolsobots refer to the extensive and skilful usage of partial or fully automated accounts by marketing teams, hackers, activists or campaign supporters. These accounts leverage online political culture to sway public opinion for or against public policies, opposition figures, or Bolsonaro himself. Drawing on empirical case studies, this paper implements quali-quanti visual methods to operationalise specific techniques for interpreting bot-associated image collections and textual content across Instagram, TikTok and Twitter/X. To unveil the modus operandi of bolsobots, we map the networks of users they follow (“following networks”), explore the visual-textual content they post, and observe the strategies they deploy to adapt to platform content moderation. Such analyses tackle methodological challenges inherent in bot studies by employing three key strategies: 1) designing context-sensitive queries and curating datasets with platforms’ interfaces and search engines to mitigate the limitations of bot scoring detectors, 2) engaging qualitatively with data visualisations to understand the vernaculars of bots, and 3) adopting a non-binary analysis framework that contextualises bots within their socio-technical environments. By acknowledging the intricate interplay between bots, user and platform cultures, this paper contributes to method innovation on bot studies and emerging quali-quanti visual methods literature.
定性定量视觉方法和政治机器人
关于自动社交媒体账户(俗称 "机器人")的计算社会科学研究往往依赖二进制验证方法来检测社交媒体上的机器人操作。这些基于推理的方法通常侧重于 Twitter(现已更名为 "X")的文本数据,容易发现误报,而且无法理解机器人通过视觉内容和特定语境随时间推移运作的微妙方式。本研究在方法论上为此类研究做出了贡献,重点关注巴西社交媒体中的 "bolsobots"。bolsobots "以巴西前总统博尔索纳罗的名字命名,指的是营销团队、黑客、活动家或竞选支持者广泛而娴熟地使用部分或完全自动化的账户。这些账户利用网络政治文化来左右舆论,支持或反对公共政策、反对派人物或博尔索纳罗本人。本文以实证案例研究为基础,采用定性-定量-定性的可视化方法,运用特定技术解读 Instagram、TikTok 和 Twitter/X 上与机器人相关的图片集和文本内容。为了揭示机器人的运作方式,我们绘制了它们关注的用户网络("关注网络"),探索了它们发布的视觉-文本内容,并观察了它们为适应平台内容审核而部署的策略。此类分析通过采用三种关键策略来应对机器人研究中固有的方法论挑战:1)利用平台界面和搜索引擎设计语境敏感查询和数据集,以减轻机器人评分检测器的局限性;2)定性地使用数据可视化来理解机器人的语言;3)采用非二元分析框架,将机器人置于其社会技术环境中。通过认识机器人、用户和平台文化之间错综复杂的相互作用,本文为机器人研究的方法创新和新兴的定性-定量-可视化方法文献做出了贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信