Extended State Observer Based Robust Feedback Linearization Control Applied to an Industrial CSTR

Q4 Engineering
Ali Medjebouri
{"title":"Extended State Observer Based Robust Feedback Linearization Control Applied to an Industrial CSTR","authors":"Ali Medjebouri","doi":"10.14313/jamris/4-2023/32","DOIUrl":null,"url":null,"abstract":"In the chemical and petrochemical industries, the Continuous Stirred Tank Reactor (CSTR) is, without doubt, one of the most popular processes. From a control point of view, the mathematical model describing the temporal evolution of the CSTR has a strongly nonlinear cross-coupled character. Moreover, modeling errors such as external disturbances, neglected dynamics, and parameter variations or uncertainties make its control task a very difficult challenge. This problem has been the subject of a wide number of control strategies. This article attempts to propose a viable, robust nonlinear decoupling control scheme. The idea behind the proposed approach lies in the design of two nested control loops. The inner loop is responsible for the compensation of the nominal model's nonlinear cross-coupled terms via a static nonlinear feedback; while the outer loop, designed around an Extended State Observer (ESO), which the additional state gathers the global effect of modeling errors, is charged with instantaneously estimating and then compensating the ESO extended state. This way, the CSTR complex dynamics are reduced to a series of decoupled linear subsystems easily controllable using a simple Proportional-Integral (PI) linear control to ensure the robust pursuit of reference signals respecting the desired performance. The presented control validation was performed numerically by an objective comparison to a classical PID controller.","PeriodicalId":37910,"journal":{"name":"Journal of Automation, Mobile Robotics and Intelligent Systems","volume":"16 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Automation, Mobile Robotics and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14313/jamris/4-2023/32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

In the chemical and petrochemical industries, the Continuous Stirred Tank Reactor (CSTR) is, without doubt, one of the most popular processes. From a control point of view, the mathematical model describing the temporal evolution of the CSTR has a strongly nonlinear cross-coupled character. Moreover, modeling errors such as external disturbances, neglected dynamics, and parameter variations or uncertainties make its control task a very difficult challenge. This problem has been the subject of a wide number of control strategies. This article attempts to propose a viable, robust nonlinear decoupling control scheme. The idea behind the proposed approach lies in the design of two nested control loops. The inner loop is responsible for the compensation of the nominal model's nonlinear cross-coupled terms via a static nonlinear feedback; while the outer loop, designed around an Extended State Observer (ESO), which the additional state gathers the global effect of modeling errors, is charged with instantaneously estimating and then compensating the ESO extended state. This way, the CSTR complex dynamics are reduced to a series of decoupled linear subsystems easily controllable using a simple Proportional-Integral (PI) linear control to ensure the robust pursuit of reference signals respecting the desired performance. The presented control validation was performed numerically by an objective comparison to a classical PID controller.
基于扩展状态观测器的鲁棒反馈线性化控制应用于工业 CSTR
在化学和石化工业中,连续搅拌槽反应器(CSTR)无疑是最受欢迎的工艺之一。从控制的角度来看,描述 CSTR 时间演化的数学模型具有强烈的非线性交叉耦合特性。此外,外部干扰、被忽视的动力学、参数变化或不确定性等建模误差也使其控制任务变得非常困难。这个问题一直是众多控制策略的主题。本文试图提出一种可行、稳健的非线性解耦控制方案。所提方法的理念在于设计两个嵌套控制回路。内环负责通过静态非线性反馈对标称模型的非线性交叉耦合项进行补偿;而围绕扩展状态观测器(ESO)设计的外环则负责瞬时估计并补偿扩展状态观测器的扩展状态。这样,CSTR 的复杂动态就被简化为一系列解耦线性子系统,易于使用简单的比例-积分(PI)线性控制进行控制,以确保稳健地追求符合预期性能的参考信号。通过与传统 PID 控制器的客观比较,对所提出的控制进行了数值验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Automation, Mobile Robotics and Intelligent Systems
Journal of Automation, Mobile Robotics and Intelligent Systems Engineering-Control and Systems Engineering
CiteScore
1.10
自引率
0.00%
发文量
25
期刊介绍: Fundamentals of automation and robotics Applied automatics Mobile robots control Distributed systems Navigation Mechatronics systems in robotics Sensors and actuators Data transmission Biomechatronics Mobile computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信