Exploratory Data Analysis and Searching Cliques in Graphs

Algorithms Pub Date : 2024-03-07 DOI:10.3390/a17030112
András Hubai, Sándor Szabó, Bogdán Zaválnij
{"title":"Exploratory Data Analysis and Searching Cliques in Graphs","authors":"András Hubai, Sándor Szabó, Bogdán Zaválnij","doi":"10.3390/a17030112","DOIUrl":null,"url":null,"abstract":"The principal component analysis is a well-known and widely used technique to determine the essential dimension of a data set. Broadly speaking, it aims to find a low-dimensional linear manifold that retains a large part of the information contained in the original data set. It may be the case that one cannot approximate the entirety of the original data set using a single low-dimensional linear manifold even though large subsets of it are amenable to such approximations. For these cases we raise the related but different challenge (problem) of locating subsets of a high dimensional data set that are approximately 1-dimensional. Naturally, we are interested in the largest of such subsets. We propose a method for finding these 1-dimensional manifolds by finding cliques in a purpose-built auxiliary graph.","PeriodicalId":502609,"journal":{"name":"Algorithms","volume":"32 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/a17030112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The principal component analysis is a well-known and widely used technique to determine the essential dimension of a data set. Broadly speaking, it aims to find a low-dimensional linear manifold that retains a large part of the information contained in the original data set. It may be the case that one cannot approximate the entirety of the original data set using a single low-dimensional linear manifold even though large subsets of it are amenable to such approximations. For these cases we raise the related but different challenge (problem) of locating subsets of a high dimensional data set that are approximately 1-dimensional. Naturally, we are interested in the largest of such subsets. We propose a method for finding these 1-dimensional manifolds by finding cliques in a purpose-built auxiliary graph.
探索性数据分析和搜索图表中的群集
主成分分析是确定数据集基本维度的一种著名且广泛使用的技术。从广义上讲,它旨在找到一个低维线性流形,以保留原始数据集中的大部分信息。可能出现的情况是,我们无法用单一的低维线性流形来近似原始数据集的全部内容,即使其中的大部分子集都可以用这种方法近似。针对这些情况,我们提出了一个相关但不同的挑战(问题),即找出近似一维的高维数据集子集。当然,我们感兴趣的是其中最大的子集。我们提出了一种通过在特制的辅助图中寻找小群来找到这些一维流形的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信