Carbon cycle: ESP and UAV data processing approaches for forest ecosystem monitoring examples

M. V. Platonova, V. D. Kotler, A. V. Kukharskii, S. Y. Ivanov
{"title":"Carbon cycle: ESP and UAV data processing approaches for forest ecosystem monitoring examples","authors":"M. V. Platonova, V. D. Kotler, A. V. Kukharskii, S. Y. Ivanov","doi":"10.18303/2619-1563-2023-4-45","DOIUrl":null,"url":null,"abstract":"The review article provides a comprehensive overview of modern methods and approaches for processing large volumes of observational data in the context of monitoring forest ecosystems. The article shows examples of processing various data obtained using Earth remote sensing (ERS) and unmanned aerial vehicles (UAVs). Particular attention is paid to assessing the carbon cycle; the practice of using machine learning methods in processing monitoring data is also discussed in detail, as they play a key role in increasing the accuracy of the resulting estimates. The article also discusses modern geographic information systems designed for complex analysis of data from various natural complexes.","PeriodicalId":190530,"journal":{"name":"Russian Journal of Geophysical Technologies","volume":"43 24","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Geophysical Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18303/2619-1563-2023-4-45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The review article provides a comprehensive overview of modern methods and approaches for processing large volumes of observational data in the context of monitoring forest ecosystems. The article shows examples of processing various data obtained using Earth remote sensing (ERS) and unmanned aerial vehicles (UAVs). Particular attention is paid to assessing the carbon cycle; the practice of using machine learning methods in processing monitoring data is also discussed in detail, as they play a key role in increasing the accuracy of the resulting estimates. The article also discusses modern geographic information systems designed for complex analysis of data from various natural complexes.
碳循环:用于森林生态系统监测实例的静电除尘器和无人飞行器数据处理方法
这篇综述文章全面概述了在监测森林生态系统方面处理大量观测数据的现代方法和途径。文章举例说明了利用地球遥感(ERS)和无人飞行器(UAV)获取的各种数据的处理方法。文章特别关注对碳循环的评估;还详细讨论了在处理监测数据时使用机器学习方法的做法,因为这些方法在提高由此得出的估算结果的准确性方面发挥着关键作用。文章还讨论了为复杂分析各种自然综合体数据而设计的现代地理信息系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信