New hexachordal theorems in metric spaces with a probability measure

Moreno Andreatta, Corentin Guichaoua, Nicolas Juillet
{"title":"New hexachordal theorems in metric spaces with a probability measure","authors":"Moreno Andreatta, Corentin Guichaoua, Nicolas Juillet","doi":"10.4171/rsmup/150","DOIUrl":null,"url":null,"abstract":"The Hexachordal Theorem is an intriguing combinatorial property of the sets in Z/12Z discovered and popularized by the musicologist Milton Babbitt (19162011). It has been given several explanations and partial generalizations. Here we enhance how this phenomenon can be understood by giving both a geometrical and a probabilistic perspective. Mathematics Subject Classification (2020). Primary: 00A65; Secondary: 28A75, 05C12, 60Dxx.","PeriodicalId":20997,"journal":{"name":"Rendiconti del Seminario Matematico della Università di Padova","volume":"51 13","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rendiconti del Seminario Matematico della Università di Padova","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/rsmup/150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The Hexachordal Theorem is an intriguing combinatorial property of the sets in Z/12Z discovered and popularized by the musicologist Milton Babbitt (19162011). It has been given several explanations and partial generalizations. Here we enhance how this phenomenon can be understood by giving both a geometrical and a probabilistic perspective. Mathematics Subject Classification (2020). Primary: 00A65; Secondary: 28A75, 05C12, 60Dxx.
具有概率度量的度量空间中的新六弦琴定理
六和弦定理是音乐学家米尔顿-巴比特(Milton Babbitt,1962-2011 年)发现并推广的 Z/12Z 中集合的一个引人入胜的组合性质。它已得到多种解释和部分概括。在此,我们将从几何学和概率论的角度进一步阐述如何理解这一现象。数学学科分类(2020)。一级:00A65;二级:28A75, 05C12, 60Dxx。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信