Digital twin method and application practice of spacecraft system driven by mechanism data

Huang Lei, Zhou Fanli, Wang Wei, Shang Shuai, Haocheng Zhou
{"title":"Digital twin method and application practice of spacecraft system driven by mechanism data","authors":"Huang Lei, Zhou Fanli, Wang Wei, Shang Shuai, Haocheng Zhou","doi":"10.12688/digitaltwin.17913.1","DOIUrl":null,"url":null,"abstract":"Spacecrafts are large-scale systems characterized by various on-orbit configurations, multi-disciplinary coupling, and complex mission modes. Research and exploration on the data-driven spacecraft digital twins development methods must be carried out to satisfy various requirements such as spacecraft on-orbit condition monitoring and risk warning, fast flight conditions predictions, intelligent failure location, and virtual verification of failure. In this paper, significant progress is made in multiple key technologies, such as cyber-physical system modeling and simulation, hybrid modeling and model evolution through mechanism-data fusion, and interactive virtual-reality perception and mapping. The spacecraft digital twins’ model is constructed, and the spacecraft digital twin’s platform is designed and developed. Multiple digital twins’ application scenarios, such as on-orbit mission simulation and emulation, real-time interactive monitoring, and fast operating condition prediction, are supported. The research results are applied to the key on-orbit operation tasks, such as entering orbit, rendezvous and docking, position conversion, and astronaut exiting, enabling system-level digital operation for the sub-systems of spacecraft such as energy, power, control, and communication sub-systems.","PeriodicalId":29831,"journal":{"name":"Digital Twin","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Twin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12688/digitaltwin.17913.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Spacecrafts are large-scale systems characterized by various on-orbit configurations, multi-disciplinary coupling, and complex mission modes. Research and exploration on the data-driven spacecraft digital twins development methods must be carried out to satisfy various requirements such as spacecraft on-orbit condition monitoring and risk warning, fast flight conditions predictions, intelligent failure location, and virtual verification of failure. In this paper, significant progress is made in multiple key technologies, such as cyber-physical system modeling and simulation, hybrid modeling and model evolution through mechanism-data fusion, and interactive virtual-reality perception and mapping. The spacecraft digital twins’ model is constructed, and the spacecraft digital twin’s platform is designed and developed. Multiple digital twins’ application scenarios, such as on-orbit mission simulation and emulation, real-time interactive monitoring, and fast operating condition prediction, are supported. The research results are applied to the key on-orbit operation tasks, such as entering orbit, rendezvous and docking, position conversion, and astronaut exiting, enabling system-level digital operation for the sub-systems of spacecraft such as energy, power, control, and communication sub-systems.
机制数据驱动航天器系统的数字孪生方法及应用实践
航天器是大型系统,具有在轨配置多样、多学科耦合、任务模式复杂等特点。为满足航天器在轨状态监测与风险预警、快速飞行状态预测、智能故障定位、故障虚拟验证等多种需求,必须开展数据驱动的航天器数字双胞胎研制方法的研究与探索。本文在网络物理系统建模与仿真、混合建模与机理数据融合模型演化、交互式虚拟现实感知与映射等多项关键技术上取得了重大进展。构建了航天器数字孪生模型,设计开发了航天器数字孪生平台。支持多种数字孪生应用场景,如在轨任务仿真模拟、实时交互监测、快速运行状态预测等。研究成果应用于入轨、交会对接、位置转换、航天员出舱等关键在轨运行任务,实现了航天器能源、动力、控制、通信等分系统的系统级数字化运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Digital Twin
Digital Twin digital twin technologies-
自引率
0.00%
发文量
0
期刊介绍: Digital Twin is a rapid multidisciplinary open access publishing platform for state-of-the-art, basic, scientific and applied research on digital twin technologies. Digital Twin covers all areas related digital twin technologies, including broad fields such as smart manufacturing, civil and industrial engineering, healthcare, agriculture, and many others. The platform is open to submissions from researchers, practitioners and experts, and all articles will benefit from open peer review.  The aim of Digital Twin is to advance the state-of-the-art in digital twin research and encourage innovation by highlighting efficient, robust and sustainable multidisciplinary applications across a variety of fields. Challenges can be addressed using theoretical, methodological, and technological approaches. The scope of Digital Twin includes, but is not limited to, the following areas:  ● Digital twin concepts, architecture, and frameworks ● Digital twin theory and method ● Digital twin key technologies and tools ● Digital twin applications and case studies ● Digital twin implementation ● Digital twin services ● Digital twin security ● Digital twin standards Digital twin also focuses on applications within and across broad sectors including: ● Smart manufacturing ● Aviation and aerospace ● Smart cities and construction ● Healthcare and medicine ● Robotics ● Shipping, vehicles and railways ● Industrial engineering and engineering management ● Agriculture ● Mining ● Power, energy and environment Digital Twin features a range of article types including research articles, case studies, method articles, study protocols, software tools, systematic reviews, data notes, brief reports, and opinion articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信