Characterization of Almost \(\eta\) -Ricci Solitons With Respect to Schouten-van Kampen Connection on Sasakian Manifolds

Tuğba Mert, M. Atc̣eken, Pakize Uygun
{"title":"Characterization of Almost \\(\\eta\\) -Ricci Solitons With Respect to Schouten-van Kampen Connection on Sasakian Manifolds","authors":"Tuğba Mert, M. Atc̣eken, Pakize Uygun","doi":"10.56557/ajomcor/2024/v31i18585","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate Sasakian manifolds that admit almost \\(\\eta\\) -Ricci solitons with respect to the Schouten-van Kampen connection using certain curvature tensors. Concepts of Ricci pseudosymmetry for Sasakian manifolds admitting \\(\\eta\\)-Ricci solitons are introduced based on the selection of specific curvature tensors such as Riemann, concircular, projective, pseudo-projective, M-projective, and W2 tensors. Subsequently, necessary conditions are established for a Sasakian manifold admitting \\(\\eta\\)-Ricci soliton with respect to the Schouten-van Kampen connection to be Ricci semisymmetric, based on the choice of curvature tensors. Characterizations are then derived, and classifications are made under certain conditions.","PeriodicalId":200824,"journal":{"name":"Asian Journal of Mathematics and Computer Research","volume":"251 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Mathematics and Computer Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56557/ajomcor/2024/v31i18585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we investigate Sasakian manifolds that admit almost \(\eta\) -Ricci solitons with respect to the Schouten-van Kampen connection using certain curvature tensors. Concepts of Ricci pseudosymmetry for Sasakian manifolds admitting \(\eta\)-Ricci solitons are introduced based on the selection of specific curvature tensors such as Riemann, concircular, projective, pseudo-projective, M-projective, and W2 tensors. Subsequently, necessary conditions are established for a Sasakian manifold admitting \(\eta\)-Ricci soliton with respect to the Schouten-van Kampen connection to be Ricci semisymmetric, based on the choice of curvature tensors. Characterizations are then derived, and classifications are made under certain conditions.
关于萨萨奇曼体上舒腾-范坎彭连接的几乎(eta)-里奇孤子的表征
在本文中,我们利用某些曲率张量研究了相对于Schouten-van Kampen连接容纳几乎(\eta\)-Ricci孤子的Sasakian流形。在选择特定曲率张量(如黎曼张量、协圆张量、投影张量、伪投影张量、M投影张量和W2张量)的基础上,介绍了容纳(\\eta\)-黎奇孤子的萨萨流形的黎奇假对称性概念。随后,根据曲率张量的选择,建立了允许与舒腾-范坎彭连接相关的(\eta\)-利玛窦孤子的萨萨基流形成为利玛窦半对称性流形的必要条件。然后推导出特征,并在某些条件下进行了分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信