An improved loci method for outlier detection in fuzzy datasets based on fractional distance metric and outlierness degree

Mehdi Hajiloei, A. F. Jahromi, Somayeh Zolmani
{"title":"An improved loci method for outlier detection in fuzzy datasets based on fractional distance metric and outlierness degree","authors":"Mehdi Hajiloei, A. F. Jahromi, Somayeh Zolmani","doi":"10.3233/jifs-234448","DOIUrl":null,"url":null,"abstract":"Density based methods are significant approaches in outlier detection for high dimensional datasets and Local correlation integral (LOCI) is one of the best of them. To extend LOCI for fuzzy datasets, we should employ suitable metrics to measure the distance between two fuzzy numbers. Euclidean distance measure is a classic one in metric learning, but to overcome curse of dimensionality, we apply fractional distance metric too. Then, after introducing the FLOCI outlier detection algorithm for identifying the fuzzy outliers, we study the efficiency of the proposed method by doing some numerical experiments, in which the obtained results were completely successfull. We also compared the results with Fuzzy versions of Distance based ABOD and SOD methods to prove robustness of this approache. More than the above, one of the main advantages of the new approach is the determination of outlierness factor for each data which is not presented in classical LOCI method.","PeriodicalId":509313,"journal":{"name":"Journal of Intelligent & Fuzzy Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jifs-234448","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Density based methods are significant approaches in outlier detection for high dimensional datasets and Local correlation integral (LOCI) is one of the best of them. To extend LOCI for fuzzy datasets, we should employ suitable metrics to measure the distance between two fuzzy numbers. Euclidean distance measure is a classic one in metric learning, but to overcome curse of dimensionality, we apply fractional distance metric too. Then, after introducing the FLOCI outlier detection algorithm for identifying the fuzzy outliers, we study the efficiency of the proposed method by doing some numerical experiments, in which the obtained results were completely successfull. We also compared the results with Fuzzy versions of Distance based ABOD and SOD methods to prove robustness of this approache. More than the above, one of the main advantages of the new approach is the determination of outlierness factor for each data which is not presented in classical LOCI method.
基于分数距离度量和离群度的模糊数据集离群点检测改进定位方法
基于密度的方法是高维数据集离群点检测的重要方法,而局部相关积分(LOCI)是其中最好的方法之一。要将局部相关积分扩展到模糊数据集,我们应该采用合适的度量方法来测量两个模糊数之间的距离。欧氏距离度量是度量学习中的经典度量,但为了克服维度诅咒,我们也采用了分数距离度量。然后,在介绍了用于识别模糊离群值的 FLOCI 离群值检测算法后,我们通过一些数值实验研究了所提方法的效率,实验结果完全正确。我们还将结果与基于距离的模糊 ABOD 和 SOD 方法进行了比较,以证明这种方法的稳健性。除上述优点外,新方法的主要优点之一是可以确定每个数据的离群因子,而这是经典 LOCI 方法所不具备的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信