Multivariable predictive models for the estimation of power consumption (kW) of a Semi-autogenous mill applying Machine Learning algorithms [Modelos predictivos multivariables para la estimación de consumo de potencia (kW) de un molino Semi - autógeno aplicando algoritmos de Machine Learning]

Miguel Angel Vera Ruiz, Juan Antonio Vega Gonzáles, Franklin Jhoan Bailon Villalba
{"title":"Multivariable predictive models for the estimation of power consumption (kW) of a Semi-autogenous mill applying Machine Learning algorithms [Modelos predictivos multivariables para la estimación de consumo de potencia (kW) de un molino Semi - autógeno aplicando algoritmos de Machine Learning]","authors":"Miguel Angel Vera Ruiz, Juan Antonio Vega Gonzáles, Franklin Jhoan Bailon Villalba","doi":"10.32829/eesj.v8i1.207","DOIUrl":null,"url":null,"abstract":"This research aimed to develop machine learning (ML) models to estimate power consumption (Kw) in a Semi-autogenous mill in the mining industry. Using Machine Learning algorithms considering various operating variables for the different models such as Multiple Linear Regression (RLM), Decision Tree Regression (RAD), Random Forest Regression (RBA) and Regression Artificial Neural Networks (ANN). The methodology adopted was applied, with an experimental design with a descriptive and transversal approach. The results of the application of these models revealed significant differences in terms of predictive efficiency. The RLM and RRNA stood out with coefficients of determination (R²) of 0.922 and 0.939, respectively, indicating a substantial capacity to explain the variability in power consumption. In contrast, the tree-based models (RAD and RBA) showed inferior performance, with R² of 0.762 and 0.471. When analyzing key metrics such as Mean Absolute Error (MAE), Mean Square Error (MSE) and Root Root Mean Square Error (RMSE), it was confirmed that both RLM and RRNA outperformed the tree-based models. These results support the choice of RLM and RRNA as preferred models for estimating power consumption in a Semi-autogenous mill.","PeriodicalId":194195,"journal":{"name":"Journal of Energy & Environmental Sciences","volume":"42 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy & Environmental Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32829/eesj.v8i1.207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This research aimed to develop machine learning (ML) models to estimate power consumption (Kw) in a Semi-autogenous mill in the mining industry. Using Machine Learning algorithms considering various operating variables for the different models such as Multiple Linear Regression (RLM), Decision Tree Regression (RAD), Random Forest Regression (RBA) and Regression Artificial Neural Networks (ANN). The methodology adopted was applied, with an experimental design with a descriptive and transversal approach. The results of the application of these models revealed significant differences in terms of predictive efficiency. The RLM and RRNA stood out with coefficients of determination (R²) of 0.922 and 0.939, respectively, indicating a substantial capacity to explain the variability in power consumption. In contrast, the tree-based models (RAD and RBA) showed inferior performance, with R² of 0.762 and 0.471. When analyzing key metrics such as Mean Absolute Error (MAE), Mean Square Error (MSE) and Root Root Mean Square Error (RMSE), it was confirmed that both RLM and RRNA outperformed the tree-based models. These results support the choice of RLM and RRNA as preferred models for estimating power consumption in a Semi-autogenous mill.
应用机器学习算法估算半自磨机耗电量(千瓦)的多变量预测模型 [Modelos predictivos multivariables para la estimación de consumo de potencia (kW) de un molino Semi - autógeno aplicando algoritmos de Machine Learning] (半自磨机耗电量(千瓦)多变量预测模型应用机器学习算法
本研究旨在开发机器学习(ML)模型,以估算采矿业半自磨机的功耗(Kw)。使用机器学习算法,考虑到不同模型的各种操作变量,如多元线性回归(RLM)、决策树回归(RAD)、随机森林回归(RBA)和回归人工神经网络(ANN)。所采用的方法是应用描述性和横向方法进行实验设计。这些模型的应用结果表明,在预测效率方面存在显著差异。RLM 和 RRNA 脱颖而出,它们的决定系数(R²)分别为 0.922 和 0.939,表明它们在解释耗电量的变化方面具有很强的能力。相比之下,基于树的模型(RAD 和 RBA)表现较差,R² 分别为 0.762 和 0.471。在分析平均绝对误差 (MAE)、均方误差 (MSE) 和均方根误差 (RMSE) 等关键指标时,证实 RLM 和 RRNA 的性能均优于基于树的模型。这些结果支持选择 RLM 和 RRNA 作为估算半自磨机功耗的首选模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信