Fixed point for mappings of asymptotically nonexpansive type in Lebesgue spaces with variable exponents

Pub Date : 2024-03-10 DOI:10.12775/tmna.2023.044
Tomas Domínguez Benavides
{"title":"Fixed point for mappings of asymptotically nonexpansive type in Lebesgue spaces with variable exponents","authors":"Tomas Domínguez Benavides","doi":"10.12775/tmna.2023.044","DOIUrl":null,"url":null,"abstract":"Assume that $(\\Omega, \\Sigma, \\mu)$ is a $\\sigma$-finite measure space and\n$p\\colon\\Omega\\to [1,\\infty]$ a variable exponent. In the case of a purely atomic\n measure, we prove that the w-FPP for mappings of asymptotically nonexpansive\n type in the Nakano space $\\ell^{p(k)}$, where $p(k)$ is a sequence in $[1,\\infty]$,\n is equivalent to several geometric properties of the space, as weak normal structure,\n the w-FPP for nonexpansive mappings and the impossibility of containing isometrically\n $L^1([0,1])$. In the case of an arbitrary $\\sigma$-finite measure, we prove that this\n characterization also holds for pointwise eventually nonexpansive mappings.\nTo determine if the w-FPP for nonexpansive mappings and for mappings of asymptotically nonexpansive type are equivalent is a long standing open question \\cite{Ki3}. \nAccording to our results, this is the case, at least, for pointwise eventually nonexpansive mappings in Lebesgue spaces with variable exponents.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.12775/tmna.2023.044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Assume that $(\Omega, \Sigma, \mu)$ is a $\sigma$-finite measure space and $p\colon\Omega\to [1,\infty]$ a variable exponent. In the case of a purely atomic measure, we prove that the w-FPP for mappings of asymptotically nonexpansive type in the Nakano space $\ell^{p(k)}$, where $p(k)$ is a sequence in $[1,\infty]$, is equivalent to several geometric properties of the space, as weak normal structure, the w-FPP for nonexpansive mappings and the impossibility of containing isometrically $L^1([0,1])$. In the case of an arbitrary $\sigma$-finite measure, we prove that this characterization also holds for pointwise eventually nonexpansive mappings. To determine if the w-FPP for nonexpansive mappings and for mappings of asymptotically nonexpansive type are equivalent is a long standing open question \cite{Ki3}. According to our results, this is the case, at least, for pointwise eventually nonexpansive mappings in Lebesgue spaces with variable exponents.
分享
查看原文
具有可变指数的勒贝格空间中渐近非展开型映射的定点
假设$(\Omega, \Sigma, \mu)$是一个$\sigma$无限度量空间,并且$p\colon\Omega\to [1,\infty]$ 是一个可变指数。在纯原子度量的情况下,我们证明了中野空间 $\ell^{p(k)}$ 中渐近非膨胀型映射的 w-FPP 等价于空间的几个几何性质,如弱法向结构、非膨胀映射的 w-FPP 以及不可能等距包含 $L^1([0,1])$。在任意$\sigma$无限度量的情况下,我们证明了这一特征对于点最终非膨胀映射也是成立的。要确定非膨胀映射的w-FPP和渐近非膨胀类型映射的w-FPP是否等价,是一个长期存在的悬而未决的问题\cite{Ki3}。根据我们的结果,至少对于具有可变指数的 Lebesgue 空间中的点最终非膨胀映射来说,情况是这样的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信