Prediction of energy consumption in grinding using artificial neural networks to improve the distribution of fragmentation size [Predicción del consumo de energía en la molienda utilizando redes neuronales artificiales para mejorar la distribución del tamaño de la fragmentación]

Jaime Yoni Anticona Cueva, Jhon Kener Vera Encarnación, Tomas Jubencio Anticona Cueva, Juan Antonio Vega Gonzáles
{"title":"Prediction of energy consumption in grinding using artificial neural networks to improve the distribution of fragmentation size [Predicción del consumo de energía en la molienda utilizando redes neuronales artificiales para mejorar la distribución del tamaño de la fragmentación]","authors":"Jaime Yoni Anticona Cueva, Jhon Kener Vera Encarnación, Tomas Jubencio Anticona Cueva, Juan Antonio Vega Gonzáles","doi":"10.32829/eesj.v8i1.206","DOIUrl":null,"url":null,"abstract":"The study focuses on the prediction of energy consumption in grinding processes using artificial neural networks (ANN). The purpose was to develop a predictive model based on artificial neural networks to estimate energy consumption in grinding and improve the fragmentation size distribution, which is crucial for the efficiency of mining and metallurgical operations. Energy consumption in grinding represents a significant part of operating costs and directly influences the profitability of operations. The ANN was trained from a data set of 126 records, which were divided into 80% for training and 20 % for model testing. The results of this research highlight optimal performance of the predictive model with performance metrics such as Mean Absolute Error (MAE), Mean Square Error (MSE), Root Mean Square Error (RMSE) and Correlation Coefficient (R2), with values of 0.78, 1.39, 1.18 and 0.98, respectively in the estimation of energy consumption in the grinding process. Finally, these results indicate that the ANN achieved an accurate prediction of energy consumption in the grinding process, this will allow better baking in energy optimization.","PeriodicalId":194195,"journal":{"name":"Journal of Energy & Environmental Sciences","volume":"75 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy & Environmental Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32829/eesj.v8i1.206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The study focuses on the prediction of energy consumption in grinding processes using artificial neural networks (ANN). The purpose was to develop a predictive model based on artificial neural networks to estimate energy consumption in grinding and improve the fragmentation size distribution, which is crucial for the efficiency of mining and metallurgical operations. Energy consumption in grinding represents a significant part of operating costs and directly influences the profitability of operations. The ANN was trained from a data set of 126 records, which were divided into 80% for training and 20 % for model testing. The results of this research highlight optimal performance of the predictive model with performance metrics such as Mean Absolute Error (MAE), Mean Square Error (MSE), Root Mean Square Error (RMSE) and Correlation Coefficient (R2), with values of 0.78, 1.39, 1.18 and 0.98, respectively in the estimation of energy consumption in the grinding process. Finally, these results indicate that the ANN achieved an accurate prediction of energy consumption in the grinding process, this will allow better baking in energy optimization.
利用人工神经网络预测碾磨能耗,改善破碎粒度分布 [利用人工神经网络预测碾磨能耗,改善破碎粒度分布]。
这项研究的重点是利用人工神经网络(ANN)预测碾磨过程中的能耗。目的是开发一种基于人工神经网络的预测模型,以估算碾磨过程中的能耗并改善破碎粒度分布,这对采矿和冶金作业的效率至关重要。碾磨能耗是运营成本的重要组成部分,直接影响运营的盈利能力。ANN 根据 126 条记录的数据集进行训练,其中 80% 用于训练,20% 用于模型测试。研究结果表明,在估算研磨过程的能耗时,预测模型的平均绝对误差 (MAE)、均方误差 (MSE)、均方根误差 (RMSE) 和相关系数 (R2) 等性能指标的值分别为 0.78、1.39、1.18 和 0.98。最后,这些结果表明,ANN 能够准确预测研磨过程中的能源消耗,这将有助于更好地进行能源优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信