On quasiinvariance of harmonic measure and Hayman-Wu theorem

S. Y. Graf
{"title":"On quasiinvariance of harmonic measure and Hayman-Wu theorem","authors":"S. Y. Graf","doi":"10.26907/0021-3446-2024-2-22-36","DOIUrl":null,"url":null,"abstract":"The article is devoted to the definition and properties of the class of diffeomorphisms ofthe unit disk D = { z : | z| < 1} on the complex plane C for which the harmonic measure of theboundary arcs of the slit disk has a limited distortion, i.e. is quasiinvariant. Estimates for derivativemappings of this class are obtained. We prove that such mappings are quasiconformal and are alsoquasiisometries with respect to the pseudohyperbolic metric. An example of a mapping with thespecified property is given. As an application, a generalization of the Hayman–Wu theorem to thisclass of mappings is proved.","PeriodicalId":507800,"journal":{"name":"Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika","volume":"82 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26907/0021-3446-2024-2-22-36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The article is devoted to the definition and properties of the class of diffeomorphisms ofthe unit disk D = { z : | z| < 1} on the complex plane C for which the harmonic measure of theboundary arcs of the slit disk has a limited distortion, i.e. is quasiinvariant. Estimates for derivativemappings of this class are obtained. We prove that such mappings are quasiconformal and are alsoquasiisometries with respect to the pseudohyperbolic metric. An example of a mapping with thespecified property is given. As an application, a generalization of the Hayman–Wu theorem to thisclass of mappings is proved.
论调和度量的准不变性和海曼-吴定理
文章主要研究复平面 C 上单位圆盘 D = { z : | z| < 1} 的衍射的定义和性质,对于该类衍射,狭缝圆盘边界弧的谐波量具有有限的扭曲,即准不变性。我们得到了该类导数映射的估计值。我们证明了这类映射是准共形的,也是关于伪双曲度量的准等距。我们给出了一个具有上述性质的映射实例。作为应用,我们还证明了海曼-吴(Hayman-Wu)定理对这一类映射的推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信