{"title":"Predicting fluid flow in fractured reservoirs by application of lacunarity analysis of natural fracture analogues","authors":"Ajay K. Sahu, Ankur Roy","doi":"10.1144/petgeo2023-091","DOIUrl":null,"url":null,"abstract":"Researchers have used lacunarity, a parameter that quantifies scale-dependent clustering in patterns to distinguish fracture networks that belong to the same fractal system. Also, in a previous study, the authors showed that lacunarity is efficient in representing the connectivity and fluid flow in synthetic fractal-fracture models having a single fractal dimension. The objective of this research is to investigate if the concepts thus developed is applicable to outcrop analogues which are representative of sub-surface fractured reservoirs. A set of nested fracture networks belonging to a single fractal system but mapped at different scales and resolutions is considered in this study. Lacunarity and connectivity values of these maps are evaluated using geospatial data analysis techniques. Fracture continuum (FC) models are built from these fracture maps and a streamline simulator, TRACE3D is used to flow simulate these maps. Results show that, although, the fractal dimension of these maps is same, but there exist stubble differences in the values of lacunarity, percolation connectivity, and also the fluid recovery values. It is further noted that the clustering, connectivity, and fluid recovery values can be pairwise correlated very well for these natural fracture maps. Thus, the overall results indicate that connectivity in fracture maps and hence in turn their flow properties are controlled by lacunarity or scale-dependent clustering attributes. Therefore, there could be novel applicability of lacunarity parameter in calibrating discrete fracture network (DFN) models with respect to connectivity of natural fracture maps and prediction of flow behavior in fractured reservoirs.\n \n Thematic collection:\n This article is part of the Digitally enabled geoscience workflows: unlocking the power of our data collection available at:\n https://www.lyellcollection.org/topic/collections/digitally-enabled-geoscience-workflows\n","PeriodicalId":49704,"journal":{"name":"Petroleum Geoscience","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Geoscience","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1144/petgeo2023-091","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Researchers have used lacunarity, a parameter that quantifies scale-dependent clustering in patterns to distinguish fracture networks that belong to the same fractal system. Also, in a previous study, the authors showed that lacunarity is efficient in representing the connectivity and fluid flow in synthetic fractal-fracture models having a single fractal dimension. The objective of this research is to investigate if the concepts thus developed is applicable to outcrop analogues which are representative of sub-surface fractured reservoirs. A set of nested fracture networks belonging to a single fractal system but mapped at different scales and resolutions is considered in this study. Lacunarity and connectivity values of these maps are evaluated using geospatial data analysis techniques. Fracture continuum (FC) models are built from these fracture maps and a streamline simulator, TRACE3D is used to flow simulate these maps. Results show that, although, the fractal dimension of these maps is same, but there exist stubble differences in the values of lacunarity, percolation connectivity, and also the fluid recovery values. It is further noted that the clustering, connectivity, and fluid recovery values can be pairwise correlated very well for these natural fracture maps. Thus, the overall results indicate that connectivity in fracture maps and hence in turn their flow properties are controlled by lacunarity or scale-dependent clustering attributes. Therefore, there could be novel applicability of lacunarity parameter in calibrating discrete fracture network (DFN) models with respect to connectivity of natural fracture maps and prediction of flow behavior in fractured reservoirs.
Thematic collection:
This article is part of the Digitally enabled geoscience workflows: unlocking the power of our data collection available at:
https://www.lyellcollection.org/topic/collections/digitally-enabled-geoscience-workflows
期刊介绍:
Petroleum Geoscience is the international journal of geoenergy and applied earth science, and is co-owned by the Geological Society of London and the European Association of Geoscientists and Engineers (EAGE).
Petroleum Geoscience transcends disciplinary boundaries and publishes a balanced mix of articles covering exploration, exploitation, appraisal, development and enhancement of sub-surface hydrocarbon resources and carbon repositories. The integration of disciplines in an applied context, whether for fluid production, carbon storage or related geoenergy applications, is a particular strength of the journal. Articles on enhancing exploration efficiency, lowering technological and environmental risk, and improving hydrocarbon recovery communicate the latest developments in sub-surface geoscience to a wide readership.
Petroleum Geoscience provides a multidisciplinary forum for those engaged in the science and technology of the rock-related sub-surface disciplines. The journal reaches some 8000 individual subscribers, and a further 1100 institutional subscriptions provide global access to readers including geologists, geophysicists, petroleum and reservoir engineers, petrophysicists and geochemists in both academia and industry. The journal aims to share knowledge of reservoir geoscience and to reflect the international nature of its development.