Global optimization of mixed integer signomial fractional programing problems

Jaleh Shirin Nejad, M. Saraj, Sara Shokrolahi Yancheshmeh, Fatemeh Kiany Harchegani
{"title":"Global optimization of mixed integer signomial fractional programing problems","authors":"Jaleh Shirin Nejad, M. Saraj, Sara Shokrolahi Yancheshmeh, Fatemeh Kiany Harchegani","doi":"10.1177/00202940231217340","DOIUrl":null,"url":null,"abstract":"The main issue in the present article is to investigate how to solve a mixed integer fractional signomial geometric programing problem (MIFSGP). In the first step to achieving this idea, we must convert a fractional signomial programing problem into a non-fractional problem via a simple conversion technique. Then, a convex relaxation with a new modified piecewise linear approximation with integer break points as a pre-solve method is used to reach an integer global optimum solution. A few numerical examples are included to illustrate the advantages of the proposed method","PeriodicalId":510299,"journal":{"name":"Measurement and Control","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/00202940231217340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The main issue in the present article is to investigate how to solve a mixed integer fractional signomial geometric programing problem (MIFSGP). In the first step to achieving this idea, we must convert a fractional signomial programing problem into a non-fractional problem via a simple conversion technique. Then, a convex relaxation with a new modified piecewise linear approximation with integer break points as a pre-solve method is used to reach an integer global optimum solution. A few numerical examples are included to illustrate the advantages of the proposed method
混合整数符号分数程序问题的全局优化
本文的主要问题是研究如何解决混合整数分数符号几何程序问题(MIFSGP)。要实现这一想法,首先必须通过简单的转换技术将分数符号编程问题转换为非分数问题。然后,使用一种新的带整数断点的修正片断线性近似凸松弛作为预求解方法,以达到整数全局最优解。本文通过几个数值示例说明了所提方法的优势
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信